UKRAINS'KYI VISNYK PSYKHONEVROLOHII

The Scientific and Practical Journal of Medicine
ISSN 2079-0325(p)
DOI 10.36927/2079-0325

THE "HARM TO OTHERS" ASSOCIATED WITH ALCOHOL CONSUMPTION IN THE WORK ENVIRONMENT

Type of Article

In the Section

Abstract

Cerebral small vessel disease (CSVD) is one of the leading causes of vascular dementia and stroke, characterized by chronic damage to arterioles, capillaries, and small veins that supply the white matter and deep gray matter structures. The aim of the study was to assess the prevalence and spectrum of neuroimaging manifestations of CSVD in patients aged 45–80 years using magnetic resonance imaging (MRI). We analyzed the MRI findings of 465 patients examined between 2020 and 2025 using high-field scanners (1.5–3.0 T) in T1, T2, FLAIR, DWI, and SWI sequences. CSVD markers were assessed according to the STRIVE protocol and semi-quantitative scales including Fazekas, BALI, Klarenbeek, Scheltens, Kadam, DAA, and BFI indices, as well as characteristics of lacunar infarcts, cerebral microbleeds, and enlarged perivascular spaces.

The results demonstrated a clear age-dependent pattern of severity: in patients under 65 years, minimal or moderate leukoaraiosis (Fazekas 1–2), single lacunes, mild cortical and medial temporal atrophy, isolated enlarged perivascular spaces, and rare microbleeds predominated. In the group over 65 years, confluent leukoaraiosis (Fazekas 2–3), multiple lacunar infarcts, medial temporal, parietal, and global cortical atrophy, greater enlargement of perivascular spaces, higher BALI, BFI, and Klarenbeek scores, and a significantly greater number of microbleeds were recorded. Statistical analysis confirmed a significant increase in mean scores for all evaluated scales with age (p < 0.05), indicating the progressive, multifactorial nature of brain damage.

The findings highlight the high prevalence of CSVD in older age groups, the strong correlation between age and neuroimaging markers, and the need for early MRI screening and monitoring in middle-aged individuals with cerebrovascular risk factors. These results may serve as a basis for the development of personalized preventive and therapeutic strategies aimed at slowing CSVD progression and reducing the risk of vascular events.

Pages

References

  1. Litak J, Mazurek M, Kulesza B, et al. Cerebral Small Vessel Disease. Int J Mol Sci. 2020 Dec 20;21(24):9729. doi:https://doi.org/3390/ijms21249729
  2. Chojdak-Łukasiewicz J, Dziadkowiak E, Zimny A, Paradowski B. Cerebral small vessel disease: A Adv  Clin Exp Med. 2021 Mar;30(3):349-356. doi:https://doi.org/10.17219/acem/131216
  3. Benveniste H, Nedergaard M. Cerebral small vessel disease: A glymphopathy? Curr Opin Neurobiol. 2022 Feb;72:15-21. doi:https://doi.org/1016/j.conb.2021.07.006
  4. Markus HS, de Leeuw FE. Cerebral small vessel disease: Recent advances and future directions. Int J Stroke. 2023 Jan;18(1):4-14. doi:https://doi.org/1177/17474930221144911
  5. Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013 Aug;12(8):822-38. doi:https://doi.org/1016/S1474-4422(13)70124-8
  6. Duering M, Biessels GJ, Brodtmann A, et al. Neuroimaging standards for research into small vessel disease-advances since 2013. Lancet Neurol. 2023;22(7):602-618. doi:https://doi.org/1016/S1474-4422(23)00131-X. Erratum in: Lancet Neurol. 2023 Sep;22(9):e10. doi: https://doi.org/10.1016/S1474-4422(23)00273-9.  Erratum in: Lancet Neurol. 2023 Sep;22(9):e10. doi: https://doi.org/10.1016/S1474-4422(23)00279-X
  7. van den Brink H, Doubal FN, Duering M. Advanced MRI in cerebral small vessel disease. Int J Stroke. 2023 Jan;18(1):28- 35. doi:https://doi.org/1177/17474930221091879
  8. Perosa V, Arts T, Assmann A, et al. Pulsatility Index in the Basal Ganglia Arteries Increases with Age in Elderly with and without Cerebral Small Vessel Disease. AJNR Am J Neuroradiol. 2022 Apr;43(4):540-546. doi:https://doi.org/3174/ajnr.A7450
  9. Rizzoni D, Rizzoni M, Nardin M, et Vascular Aging and Disease of the Small Vessels. High Blood Press Cardiovasc Prev. 2019 Jun;26(3):183-189. doi:https://doi.org/10.1007/s40292-019-00320-w
  10. Frisoni GB, van der Flier W. STRIVEing to describe small vessel disease. Lancet Neurol. 2023 Jul;22(7):548-549. doi:https://doi.org/1016/S1474-4422(23)00197-7
  11. Sun L, Hui L, Li Y, Chen X, Liu  R, Ma  Pathogenesis and research progress in leukoaraiosis. Front Hum Neurosci. 2022 Aug 19;16:902731
  12. Ferro DA, Kuijf HJ, Hilal S, et al. Association Between Cerebral Cortical Microinfarcts and Perilesional Cortical Atrophy on 3T MRI. Neurology. 2022 Feb 8;98(6):e612-e622. doi:https://doi.org/1212/WNL.0000000000013140
  13. Sarria-Estrada S, Acevedo C, Mitjana R, et al. Reproducibility of qualitative assessments of temporal lobe atrophy in MRI studies. Radiologia. 2015 May-Jun;57(3):225-8. English, Spanish. doi:https://doi.org/1016/j.rx.2014.04.002
  14. Mimenza-Alvarado A, Aguilar-Navarro SG, YeverinoCastro S, Mendoza-Franco C, Ávila-Funes JA, Román GC. Neuroimaging Characteristics of Small-Vessel Disease in Older Adults with Normal Cognition, Mild Cognitive Impairment, and Alzheimer Disease. Dement Geriatr Cogn Dis Extra. 2018 May 16;8(2):199-206. doi: https://doi.org/10.1159/000488705
  15. Mao F, Xu Z, Shao M, Xiang X, Zhou X. Deep medullary veins score is associated with atrophy in patients with cerebral small vessel disease. Front Neurol. 2024 Aug 29;15:1417805. doi: https://doi.org/10.3389/fneur.2024.1417805
  16. Grajauskas LA, Guo H, D’Arcy RCN, Song X. Toward MRI based whole-brain health assessment: The brain atrophy and lesion index (BALI). Aging Med (Milton). 2018 Apr 26;1(1):55- 63. doi: https://doi.org/10.1002/agm2.12014
  17. Barisano G, Lynch KM, Sibilia F, et al. Imaging perivascular space structure and function using brain MRI. Neuroimage. 2022 Aug 15;257:119329. doi: https://doi.org/10.1016/j.neuroimage.2022.119329
  18. Humphries TJ, Mathew P. Cerebral microbleeds: hearing through the silence-a narrative review. Curr Med Res Opin. 2019 Feb;35(2):359-366. doi: https://doi.org/10.1080/03007995.2018.1521787
  19. K larenbeek P, van Oostenbrugge RJ, Rouhl RP, Knottnerus IL, Staals J. Ambulatory blood pressure in patients with lacunar stroke: association with total MRI burden of cerebral small vessel disease. Stroke. 2013 Nov;44(11):2995-9. doi: https://doi.org/10.1161/STROKEAHA.113.002545
  20. Gallucci M, Grassi A, Focella L, et al. Association between the frailty index and vascular brain damage: The Treviso Dementia (TREDEM) registry. Exp Gerontol. 2022 Oct 1;167:111894. doi:https://doi.org/10.1016/j.exger.2022.111894
  21. Fetisov V. S. STATISTICA statistical data analysis package: textbook. Nizhyn: Publishing house of the M. Gogol National State University, 2018. 102 p. Fetisov VS. STATISTICA Data Statistical Analysis Package. Nizhyn: Publishing house of the M. Gogol National State University. 2018. 102 p. (In Ukrainian).
  22. Opare -Addo PA, Sar fo FS, Berchie PO, Aikins M, Ovbiagele B. Participation by patients from low- and middleincome countries (LMICs) in trial evidence supporting secondary stroke prevention guideline recommendations. J Neurol Sci. 2023 May 15;448:120641. doi: https://doi.org/10.1016/j.jns.2023.120641