UKRAINS'KYI VISNYK PSYKHONEVROLOHII

The Scientific and Practical Journal of Medicine
ISSN 2079-0325(p)
DOI 10.36927/2079-0325

NEUROLOGICAL, PSYCHIATRIC AND PSYCHOSOCIAL CONSEQUENCES OF CARDIOSURGICAL INTERVENTIONS IN THE CONDITIONS OF ARTIFICIAL BLOOD CIRCULATION AND GENERAL APPROACHES TO THEIR PREVENTION

Type of Article

In the Section

Index UDK:

Abstract

Cardiac surgery is a modern, effective, and promising direction of treatment of patients with severe cardiac pathology. An integral component of modern surgical interventions on the heart is artificial blood circulation, which is accompanied by several risks for the patient both during the operation and in the postoperative period.

Despite the improvement of the surgical technique and the technological support of surgical interventions on the heart, the expansion of the spectrum of indications for operations and the increase in the average age of patients, the frequency of postoperative complications in CPH remains high, and the search for ways to reduce them is an extremely important task of modern medical science and practice

Among the postoperative complications of CVC, a significant place belongs to neurological disorders cerebral infarction, postoperative encephalopathy, and postoperative cognitive dysfunction. Also, negative clinical-psychopathological and psychosocial consequences occupy a significant place. Current scientific data on the pathogenesis, clinical and phenomenological features, and ways of treatment and prevention of complications of CHD are incomplete, contradictory, and require additional research.

Based on the above, a conclusion was made about the relevance of a number of important problems regarding the treatment and rehabilitation of patients with neurological consequences of surgical interventions on the heart, which require careful study and further resolution

Pages

References

  1. Guidelines for perioperative care in cardiac surgery: enhanced recovery after surgery society recommendations / Engelman D. T., Ben Ali W., Williams J. B. [et al.] // JAMA Surg. 2019. Vol. 154. P. 755—766. DOI: https://doi.org/10.1001/jamasurg.2019.1153.
  2. The effect of  postoperative complications on  healthrelated quality of life and survival 12 years after coronary artery bypass grafting — a prospective cohort study / [Hokkanen M., Huhtala H., Laurikka J., Järvinen O.] // J Cardiothorac Surg. 2021. Vol. 16(1). P. 173. DOI: https://doi.org/10.1186/s13019-021-01527-6.
  3. Research priorities for heart failure with preserved ejection fraction: national heart, lung, and blood institute working group summary / Shah S. , Borlaug B.  A., Kitzman D. W. [et  al.]  // Circulation. 2020. Vol.  141(12). P.  1001—1026. DOI: https://doi.org/10.1161/CIRCULATIONAHA.119.041886.
  4. Fractional flow reserve-based coronary artery bypass surgery: current evidence and future directions / Spadaccio C., Glineur D., Barbato E. [et al.] // Cardiovasc Inter. 2020. Vol. 13(9). P. 1086—1096. DOI: https://doi.org/10.1016/j.jcin.2019.12.017.
  5. Operative mortality in adult cardiac surgery: is the currently utilized definition justified? / Chan P. G., Seese L., ArandaMichel E. [et al.] // J Thorac Dis. 2021. Vol. 13(10). P. 5582—5591. DOI: https://doi.org/10.21037/jtd-20-2213.
  6. Utility of 90-Day Mortality vs 30-Day Mortality as a Quality Metric for Transcatheter and Surgical Aortic Valve Replacement Outcomes / Hirji S., McGurk S., Kiehm S. [et al.] // JAMA Cardiol. 2020. Vol. 5. P. 156-65. DOI: https://doi.org/10.1001/jamacardio.2019.4657.
  7. Neurologic outcomes after heart surgery / [Fang A., Allen K. Y., Marino B. S., Brady K. M.] // Paediatr Anaesth. 2019. Vol. 29(11). P. 1086—1093. DOI: https://doi.org/10.1111/pan.13744.
  8. A pilot study of  cerebral tissue oxygenation and postoperative cognitive dysfunction among patients undergoing coronary artery bypass grafting randomised to  surgery with or without cardiopulmonary bypass / Kok W. F., van Harten A. E., Koene B. M. [et al.] // Anaesthesia. 2014. Vol. 69 (6). P. 613—622. DOI: https://doi.org/10.1111/anae.12634.
  9. Inhibition of the integrated stress response reverses cognitive deficits after traumatic brain injury  / Choua A., Krukowskia K., Jopsona T. [et al.] // Proceedings of the National Academy of Sciences. 2017. Vol. 3. P. 6420—6426. DOI: https://doi.org/10.1073/pnas.1707661114.
  10. How to recognize and treat metabolic encephalopathy in neurology intensive care unit / [Berisavac I. I., Jovanoviс D. R., Padjen V. V. [et al.] // Neurol India. 2017. Vol. 65(1). P. 123—128. DOI: https://doi.org/10.4103/0028-3886.198192.
  11. Transcranial Doppler and transcranial color duplex in defining collateral cerebral blood flow / Saqqur M., Khan K., Derksen C. [et al.] // J. Neuroimaging. 2018. Vol. 28(5). P. 455- 476. DOI: https://doi.org/10.1111/jon.12535.
  12. Lu W. Development of Fast Neurotransmitter Synapses: general principles / W. Lu, Y. Chen // Brain Research Bulletin. 2017. Vol.129. P.1-90. DOI: https://doi.org/10.1016/j.brainresbull.2016.11.009.
  13. Michinaga S. Protection of the blood-brain barrier as a  therapeutic strategy for brain damage  / S.  Michinaga, Y. Koyama // Biol Pharm Bull. 2017. Vol. 40(5). P. 569—575.DOI: https://doi.org/10.1248/bpb.b16-00991.
  14. Choi H.A. Cerebral endothelial dysfunction in reversible cerebral vasoconstriction syndrome: a case-control study / H. A. Choi, M. J. Lee, C. S. Chung // Journal of Headache Pain. 2017. Vol.18, Vol. 1. P. 29. DOI: https://doi.org/10.1186/s10194-017-0738-x.
  15. Mamalyga M.L. Effect of progressive heart failure on cerebral hemodynamics and monoamine metabolism in CNS / M.    Mamalyga, L.  M.  Mamalyga  // Bull Exp  Biol Med. 2017. Vol. 163(3). P. 307—312. DOI: https://doi.org/10.1007/s10517-017-3791-1.
  16. Postoperative cognitive change after cardiac surgery predicts long-term cognitive outcome / Relander K., Hietanen M., Rantanen K. [et al.] // Brain Behav. 2020. Vol. 10(9). P. e01750. DOI: https://doi.org/10.1002/brb3.1750.
  17. Early and long-term cognitive outcome after conventional cardiac valve surgery / Knipp S. C., Weimar C., Schlamann M. [et al.] // Interact Cardiovasc Thorac Surg. 2017. Vol. 24. P. 534— 540. DOI: https://doi.org/10.1093/icvts/ivw421.
  18. Neurocognitive function after cardiac surgery: From phenotypes to mechanisms / Berger M., Terrando N., Smith S. K. [et al.] // Anesthesiology. 2018. Vol. 129(4). P. 829—851. DOI: https://doi.org/10.1097/ALN.0000000000002194.
  19. Fixing hearts and protecting minds: A review of the multiple, interacting factors influencing cognitive function after coronary artery bypass graft surgery / Hogan A. M., Shipolini A., Brown M. M. [et al.] // Circulation. 2013. Vol. 128. P. 162—171. DOI: https://doi.org/10.1161/CIRCULATIONAHA.112.000701.
  20. Low rate of asymptomatic cerebral embolism and improved procedural efficiency with the novel pulmonary vein ablation catheter GOLD: results of the PRECISION GOLD trial / De Greef Y., Dekker L., Boersma L. [et [ // Europace. 2016. Vol.18, № 5. P. 687—695. DOI: https://doi.org/10.1093/europace/euv385.
  21. Dehtiar V., Chanhli N. Methods of intraoperative protection of the patient to avoid neurovascular, hemorrhagic, respiratory and nephrological complications during surgery on the thoraco-abdominal aorta. Norwegian Journal of development of the International Science. 2018. Vol. 24. P. 31-33. https://norijournal.com/wp-content/uploads/2020/09/NJD_24_1.pdf.
  22. Vascular content, tone, integrity, and haemodynamics for guiding fluid therapy: a conceptual approach / Chawla L. S., Ince C., Chappell D. [et ] // Brit. J. Anaesth. 2014. Vol.  17. P. 232—236. DOI: https://doi.org/10.1093/bja/aeu298.
  23. Malate-aspartate shunt in neuronal adaptation to ischemic conditions: molecular-biochemical mechanisms of activation and regulation / Belenichev I. F., Kolesnik Y. M., Pavlov S. V. [et al.] // Neurochemical Journal. 2012. Vol. 6, No. 1. Р. 22—28. DOI: https://doi.org/10.1134/S1819712412010023.
  24. Etiologic investigation of ischemic stroke in young adults / Larrue V., Berhoune N., Massabuau P. [et al.] // Neurology. 2011. № 76(23). Р. 1983—1988. DOI: https://doi.org/10.1212/WNL.0b013e31821e5517.
  25. The overexpression of NCAM (CD56) in human hearts is specific for ischemic damage / Gattenloner S., Waller C., Ertl G. [et al.] // Verh Dtsch Ges Pathol Journal. 2004. Vol. 88. P. 246—251. PMID: 16892559.
  26. The disparity between public utilization and surgeon awareness of the STS patient education website / Cohen R. G., Kumar S. R., Lin J. [et al.] // Ann Thorac Surg. 2020. Vol. 110(1). P. 284—289. DOI: https://doi.org/10.1016/j.athoracsur.2019.09.074.
  27. Fractional flow reserve-based coronary artery bypass surgery: current evidence and future directions / Spadaccio C., Glineur D., Barbato E. [et al.] // Cardiovasc Inter. 2020. Vol. 13(9). P. 1086—1096. DOI: https://doi.org/10.1016/j.jcin.2019.12.017.
  28. Prognostic Value of high-sensitivity troponin t after on-pump coronary artery bypass graft surgery / Nellipudi J. A., Baker R. A., Dykes L. [et al.] // Heart Lung Circ. 2021. Vol. 30(10). P. 1562—1569. DOI: https://doi.org/10.1016/j.hlc.2021.03.272.
  29. PRISMA-S: an extension to the PRISMA statement for reporting literature searches in  systematic reviews  / Rethlefsen    L., Kirtley S., Waffenschmidt S. [et  al.]  // Syst Rev. 2021. Vol.  10(1). P.  1—19. DOI: https://doi.org/10.1186/s13643-020-01542-z.
  30. Serial Changes in Cognitive Function Following Transcatheter Aortic Valve Replacement / Auffret V., CampeloParada F., Regueiro A. [et al.] // J Am Coll Cardiol. 2016. Vol. 68. P. 2129—2141. DOI: https://doi.org/10.1016/j.jacc.2016.08.046.
  31. Postoperative Neurocognitive Disorders in Cardiac Surgery: Investigating the Role of Intraoperative Hypotension. A Systematic Review  / [Czok M., Pluta M.  , Putowski Z., Krzych Ł. J.] // Int J Environ Res Public Health. 2021. Vol. 18(2). P. 786. DOI: https://doi.org/10.3390/ijerph18020786.
  32. Long-term survival and cognitive function according to blood pressure management during cardiac surgery. A follow-up / Larsen M. H., Draegert C., Vedel A. G. [et al.] // Acta Anaesthesiol. Scand. 2020. Vol. 64. P. 936—944. DOI: https://doi.org/10.1111/aas.13595.
  33. Blood-Brain Barrier Disruption After Cardiopulmonary Bypass: Diagnosis and Correlation to Cognition / Abrahamov D., Levran O., Naparstek S. [et al.] // Ann Thorac Surg. 2017. Vol. 5. P. 1229. DOI: https://doi.org/10.1016/j.athoracsur.2016.10.043.
  34. Impact of dexmedetomidine on the incidence of  delirium in elderly patients after cardiac surgery: A randomized controlled trial  / Li  , Yang J., Nie  X.  L. [et  al.]  // PLoS One. 2017. Vol. 12. P. e0170757. DOI: https://doi.org/10.1371/journal.pone.0170757.
  35. Intraoperative cerebral oxygenation, oxidative injury, and delirium following cardiac surgery / Lopez M. , Pandharipande P., Morse J. [et al.] // Free Radic Biol Med. 2017. Vol. 103. P. 192—198. DOI: https://doi.org/10.1016/j.freeradbiomed.2016.12.039.
  36. Impact of Total Knee Arthroplasty with General Anesthesia on Brain Networks: Cognitive Efficiency and Ventricular Volume Predict Functional Connectivity Decline in Older Adults / Huang H., Tanner J., Parvataneni H. [et al.] // J Alzheimers Dis. 2018. Vol. 62. P. 319—333. DOI: https://doi.org/10.3233/JAD-170496.
  37. Recommendations for the nomenclature of cognitive change associated with anesthesia and surgery / Evered L., Silbert  , Knopman D. S. [et  al.]; Nomenclature Consensus Working Group // Anesthesiology. 2017. Vol. 1. DOI: https://doi.org/10.1097/ALN.0000000000002334.
  38. A dynamic view of comorbid depression and generalized anxiety disorder symptom change in  chronic heart failure: discrete effects of cognitive behavioral therapy, exercise rehabilitation, and psychotropic medication / [Tully P. J., Selkow T., Bengel J., Rafanelli C.] // Disabil Rehabil. 2015. Vol. 37. P. 585—592. DOI: https://doi.org/10.3109/09638288.2014.935493.
  39. Depression, anxiety and major adverse cardiovascular and cerebrovascular events in patients following coronary artery bypass graft surgery: a five year longitudinal cohort study / Tully    J., Winefield H.  R., Baker R.  A. [et  al.]  // Biopsychosoc Med. 2015. Vol. 9. P. 14. DOI: https://doi.org/10.1186/s13030-015-0041-5.
  40. Levett D.Z.H. Psychological factors, prehabilitation and surgical outcomes: evidence and future directions / D.Z.H. Levett, C. Grimmett // Anaesthesia. 2019. Vol. 74. P.  36—42. DOI: https://doi.org/10.1111/anae.14507.
  41. Significance of psychosocial factors in cardiology: update 2018 / Albus C., Waller C., Fritzsche K. [et al.] // Clin Res Cardiol. 2019. Vol. 108. P. 1175—1196. DOI: https://doi.org/10.1007/s00392-019-01488-w.
  42. Updating EuroSCORE by including emotional, behavioural, social and functional factors to the risk assessment of  patients undergoing cardiac surgery: a  study protocol  / Cromhout P. F., Berg S. K., Moons P. [et al.] // BMJ Open. 2019. Vol. 9. P. e026745. DOI: https://doi.org/10.1136/bmjopen-2018-026745.
  43. Psychological Preparation for Cardiac Surgery / [Salzmann S., Salzmann-Djufri M., Wilhelm M., Euteneuer F.] // Curr Cardiol Rep. 2020. Vol. 22(12). P. 172. DOI: https://doi.org/10.1007/s11886-020-01424-9.
  44. Predictors of long-term HRQOL following cardiac surgery: a 5-year follow-up study / Grazulyte D., Norkiene I., Kazlauskas E. [et al.] // Health Qual Life Outcomes. 2021. Vol. 19(1). P.  DOI: https://doi.org/10.1186/s12955-021-01838-1.
  45. Evaluating Quality in Adult Cardiac Surgery / [Sharma V., Glotzbach J. P., Ryan J., Selzman C. H.] // Tex Heart Inst J. 2021. Vol. 48(1). P. e197136. DOI: https://doi.org/10.14503/THIJ-19-7136.
  46. Postoperative Quality of Life After Full-sternotomy and Ministernotomy Aortic Valve Replacement / Perrotti  , Francica A., Monaco F. [et al.] // Ann Thorac Surg. 2021. Vol. 21. P. 143. DOI: https://doi.org/10.1016/j.athoracsur.2021.11.055.
  47. Bradley S.M. Value in cardiovascular care / S. M. Bradley, C. E. Strauss, P. M. Ho // Heart. 2017. Vol. 103(16). P. 1238—1243. DOI: https://doi.org/10.1136/heartjnl-2016-309753.
  48. Health-status outcomes with invasive or conservative care in coronary disease / Spertus J. A., Jones P. G., Maron D. J. [et ]; ISCHEMIA Research Group. // N  Engl J  Med. 2020. Vol. 382(15). P. 1408—1419. DOI: https://doi.org/10.1056/NEJMoa1916370.
  49. SYNTAX Trial Investigators. Quality of life after surgery or des in  patients with 3-vessel or  left main disease  / Abdallah M. S., Wang K., Magnuson E. A. [et al.] // J Am Coll Cardiol. 2017. Vol. 69(16). P. 2039—2050. DOI: https://doi.org/10.1016/j.jacc.2017.02.031.
  50. Quality of life 10 years after cardiac surgery in adults: a long-term follow-up study / Perrotti A., Ecarnot F., Monaco F. [et al.] // Health Qual Life Outcomes. 2019. Vol. 17. P. 1—9. DOI: https://doi.org/10.1186/s12955-019-1160-7.
  51. Tools for assessing quality of life in cardiology and cardiac surgery / Gierlaszyńska K., Pudlo R., Jaworska I. [et al.] // Kardiochirurgia i Torakochirurgia Polska : Pol J Thorac Cardiovasc Surg. 2016. Vol. 13. P. 78—82. DOI: https://doi.org/10.5114/kitp.2016.58974.
  52. Rawashdeh R. Physiological and psychological determinants of quality of life for patients after cardiac surgery and the associated factors / R. A. Rawashdeh, J. A. Alshraideh // Open J Nursing. 2019. Vol. 09. P. 1022—1040. DOI: https://doi.org/10.4236/ojn.2019.910076.
  53. Quality of Life in Patients Undergoing Cardiac Surgery: Role of Coping Strategies / Iqbal K., Irshad Y., Ali  Gilani    R. [et al.] // Cureus. 2021. Vol. 13(7). P. e16435. DOI: https://doi.org/10.7759/cureus.
  54. Critical appraisal on the impact of preoperative rehabilitation and outcomes after major abdominal and cardiothoracic surgery: a systematic review and meta-analysis / [Kamarajah S. K., Bundred , Weblin J., Tan B.  H.]  // Surgery. 2020. Vol.  167(3). P. 540—549. DOI: https://doi.org/10.1016/j.surg.2019.07.032.
  55. Traditional vs extended hybrid cardiac rehabilitation based on the continuous care model for patients who have undergone coronary artery bypass surgery in a middle-income country: A randomized controlled trial / [Pakrad F., Ahmadi F., Grace S. L. [et al.] // Archiv Phys Med Rehabil. 2021. Vol. 102(11). P. 2091—2101. DOI: https://doi.org/10.1016/j.apmr.2021.04.026.1.
  56. Slupe A.M. Effects of Anesthesia on Cerebral Blood Flow, Metabolism, and Neuroprotection / A.M. Slupe, J.R. Kirsch  // J. Cereb. Blood Flow Metab. 2018. Vol. 38. P. 2192—2208. DOI: https://doi.org/10.1177/0271678X18789273.
  57. Predictors and Outcomes of Ischemic Stroke After Cardiac Surgery / Sultan I., Bianco V., Kilic A. [et  ]  // Ann. Thorac. Surg. 2020. Vol. 110. P. 448—456. DOI: https://doi.org/10.1016/j.athoracsur.2020.02.025.
  58. Optimizing cerebral oxygenation in cardiac surgery: A randomized controlled trial examining neurocognitive and perioperative outcomes / Uysal S., Lin H.-M., Trinh M. [et al.] // J. Thorac. Cardiovasc. Surg. 2020. Vol. P.  943—953. DOI: https://doi.org/10.1016/j.jtcvs.2019.03.036.
  59. Koutsogiannidis C.-P.C. Pharmacological neuroprotection in cardiac surgery: Effectiveness of pharmacologicpreconditioning with erythromycin / C.-P. C. Koutsogiannidis, E. O. Johnson / Curr. Vasc. Pharmacol. 2018. Vol. 16. P. 329—335. DOI: https://doi.org/10.2174/1570161115666171010120953.
  60. Perioperative erythropoietin protects the CNS against ischemic lesions in patients after open heart surgery / Lakič N., Mrak M., Šušteršič M. [et al.] // Wien. Klin. Wochenschr. 2016. Vol. 128. P. 875—881. DOI: https://doi.org/10.1007/s00508-016-1063-0.