UKRAINS'KYI VISNYK PSYKHONEVROLOHII

The Scientific and Practical Journal of Medicine
ISSN 2079-0325(p)
DOI 10.36927/2079-0325

COMPARATIVE MATHEMATICAL ANALYSIS BASED ON THE DATA HISTORY OF NONHEREDITARY RISK AND ANTI-RISK FACTORS BETWEEN PATIENTS WITH SPORADIC AND FAMILIAL FORMS OF MULTIPLE SCLEROSIS

Type of Article

In the Section

Abstract

Objective. To identify nonhereditary risk and anti-risk factors in the development of multiple sclerosis (MS) according to premorbid history and lifestyle in patients with sporadic and familial forms of the disease using mathematical analysis.

Methods of the study. questionnaire; methods of mathematical statistics (mean values, confidence interval); permutation test to quantify significant differences between the indicators in the study groups; odds ratio (OR) to determine the strength of the relationship between patients with different forms of MS and premorbid history and lifestyle data.

Results of the study. The study included 97 patients with MS: sporadic form — 55 (8 men and 47 women) with an average age of 47.8 years and disease duration of 15.7 years; familial form — 42 (10 men and 32 women) with an average age of 46.3 years and disease duration of 16.6 years. A comparative analysis was conducted between patients with sporadic (55) and familial (42) forms of MS; with relapsing-remitting (RR) in sporadic (31) and familial (20) forms; with progressive-type (PtP) in sporadic (24) and familial (22) forms.

A comparative analysis of premorbid history and lifestyle indicators revealed their significant differences in different types of course in patients with sporadic and familial forms of MS. The high level of reliability of the indicators in the study groups allowed us to consider them as conditional risk factors (RF) and anti-risk factors (ARF) in the development of MS. In the general group of patients with sporadic form, multiorgan somatic pathology, allergic reactions and endocrine disorders prevailed; in the general group of familial form, cardiovascular diseases, chronic pathology of the ENT organs and viral infections were prevalent. In sporadic PTP, in contrast to RP, a significant variety of indicators was found, including somatic and infectious diseases, poor tolerance to hot weather, and lifestyle characteristics. In the familial form, in contrast to the sporadic form, lifestyle indicators prevailed in RP, while in PTP, viral and bacterial infections played a leading role. In the sporadic form, in contrast to the familial form, conditional ARF was obtained, indicating a healthy lifestyle in this category of patients. A significant prevalence of mean OR values for lifestyle indicators was obtained compared with the premorbid anamnesis: in the familial form of RP in the form of RF (insufficient intake of vitamins and minerals, diet with a predominance of meat and dairy foods, excessive coffee consumption); in the sporadic form in all study groups in the form of ARF (systematic exercise, balanced diet, sufficient intake of vitamins and minerals). mathematical studies, reliable indicators of premorbid history and lifestyle formed different structures of conditional.

Conclusions. Thus, according to the results of the clinical and RF and ARF, taking into account the form and type of MS course. This position is supported by the selective and differentiated distribution of conditional RF in RP and PTP in patients with familial forms, which opens up new therapeutic possibilities at different stages of the disease. Depending on the type of course, the treatment algorithm for pancreatic cancer in the familial form should be aimed at correcting lifestyle-related factors, while in PTP — at timely prevention and treatment of bacterial and viral infections. The presence of lifestyle indicators in the form of conditional ARF only in sporadic form indicates that the pathogenetic impact of nonhereditary ARF in familial MS is mainly controlled by genetic mechanisms responsible for the development of MS. The increase in the level of mean OR values for lifestyle indicators, in contrast to premorbid history, has important diagnostic and prognostic significance for this category of RF and ARF in the two forms of MS.

Pages

References

  1. Gusev E. I., Zavalishin I. A., Boyko A. N. Rasseyannyy skleroz : klinicheskoye rukovodstvo. Moskva : Real Tayms, 2011. 528 s. (In Russian).
  2. Boyko A. N., Gusev E. I. Dostizheniya v izuchenii problem rasseyannogo skleroza (obzor). Doktor. Ru. Nevrologiya, psikhiatriya. 2012. T. 73. No. 5. S. 9—15. (In Russian).
  3. Shmidt T. E., Yakhno N. N. Rasseyannyy skleroz : rukovodstvo dlya vrachey. 5-e izd. Moskva : MEDpress-inform, 2016. 272 s. ISBN 978-5-00030-337-5. (In Russian).
  4. Favorova O. O., Boyko A. N., Kulakova O. G. Rasseyannyy skleroz kak poligennoye zabolevaniye: sovremennoye sostoyaniye problemy. Genetika. 2010. T. 46, No. 3. S. 302—313. (In Russian).
  5. Gandhi R. Role of the innate immune system in the pathogenesis of multiple sclerosis / R. Gandhi, A. Laroni, H. L. Weiner // J. Neuroim. 2010. Vol. 221. P. 7—14.
  6. Antoniuk T. Rozsiianyi skleroz: sytuatsiinyi analiz problemy v Ukraini: za materialamy obhovorennia rezultativ pershoho v Ukraini kompleksnoho doslidzhennia zakhvoriuvanosti na rozsiianyi skleroz, yii diahnostyky ta likuvannia. NeiroNEWS: psykhonevrolohiia ta neiropsykhiatriia. 2018. No. 3 (96). S. 6—9. (In Ukrainian).
  7. Korobko D. S. Kliniko-geneticheskoye issledovaniye rasseyannogo skleroza (na primere populyatsii Novosibirskoy oblasti) : avtoref. dis.na soiskaniye uch. stepeni kand. med.nauk: Spetsialnost 14.01.11 — nervnyye bolezni [abstract dis. for an academic degree MD, PhD. Sciences Specialty 14.01.11 — nervous diseases]. Novosibirsk. 2014. 33 s. (In Russian).
  8. McElroy J. P. Multiple sclerosis genetics / J. P. McElroy, J. R. Oksenberg // Curr Top Microbiol Immunol. 2008. No.318. Р. 45—72. DOI: https://doi.org/10.1007/978-3-540-73677-6_3.
  9. Sych N. S. Patohenetychni aspekty rozsiianoho sklerozu [Pathogenetic aspects of multiple sclerosis]. Ukrainskyi medychnyi chasopys [Ukrainian medical journal]. 2012. No. 2 (88) III—IV. (In Ukrainian). URI: https://www.umj.com.ua/article/30152/patogenetichni-aspektirozsiyanogo-sklerozu.
  10. Spirin N. N., Kachura D. A., Kachura A. N., Boyko A. N. Vliyaniye ekologicheskikh faktorov na zabolevayemost i rasprostranennost rasseyannogo skleroza. Zhurnal nevrologii i psikhiatrii imeni S. S. Korsakova. 2003. No. 2. S. 111—113. (In Russian).
  11. Ebers G. C. Environmental factor and multiple sclerosis // Lancet Neurol. 2008. Vol. 7, No. 3. Р. 268—277. DOI: https://doi.org/10.1016/S1474-422(08)70042-5.
  12. Balcerac A. Genetics and familial distribution of multiple sclerosis: A review / A. Balcerac, C. Louapre // Rev. Neurol. 2022. Vol. 178. No. 6. P. 512—520. DOI: https://doi.org/10.1016/j.neurol.2021.11.009.
  13. Olsson T. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis / T. Olsson, L. F. Barcellos, L. Alfredsson // Nat. Rev Neurol. 2017. Vol. 13. No. 1. P. 25—36. DOI: https://doi.org/10.1038/nrneurol.2016.187.
  14. Risk Factors Associated with Multiple Sclerosis: A Case-Control Study in Damascus, Syria / Maher Taan, Farah Al Ahmad, Mohammad Karim Ercksousi, and Ghassan Hamza // Multiple Sclerosis International, 2021. Р. 1—5. DOI: https://doi.org/10.1155/2021/8147451.
  15. Venkatesan A. Infections and multiple sclerosis / A. Venkatesan, R. T. Johnson // Handbook of Clinical Neurology. 2014. Vol. 122. P. 151—171. DOI: https://doi.org/10.1016/B978-0-444-520012.00007-8.
  16. Venkatesan A. Multiple sclerosis and infections // Neurodegener. Dis. Manag. 2015. Vol. 5 (6 Suppl). P. 11—14. DOI: 10.2217/nmt.15.64.
  17. Elevated Epstein-Barr virus-encoded nuclear antigen-1 immune responses predict conversion to multiple sclerosis / J. D. Lünemann, M. Tintoré, B. Messmer [et al.] // Ann. Neurol. 2010. Vol. 67. No. 2. P.159—169. DOI: https://doi.org/10.1002/ana.21886.
  18. Intrathecal immune responses to EBV in early MS / E. Jaquiéry, S. Jilek, M. Schluep [et al.] // Eur. J. Immunol. 2010. Vol. 40. No. 3. Р. 878—887. DOI: https://doi.org/10.1002/eji.200939761. Erratum in: Eur J Immunol. 2011 May;41(5):1501. PMID: 20017197.
  19. The role of stress perception and coping with stress and the quality of life among multiple sclerosis patients / A. Kołtuniuk, M. Kazimierska-Zając, K. Cisek, J. Chojdak-Łukasiewicz // Psychology Research and Behavior Management. 2021. Vol. 14. P. 805—815. Wroclaw, Poland. DOI: https://doi.org/10.2147/PRBM.S310664.
  20. Kang J.-H. Increased risk of multiple sclerosis after traumatic brain injury: a nationwide population-based study / J.-H. Kang, H.-C. Lin, Taiwan // Journal of Neurotrauma. 2012. No. 29 (1). Р. 90—95. DOI: https://doi.org/10.1089/neu.2011.1936.
  21. The risk of smoking on multiple sclerosis: A meta-analysis based on 20,626 cases from case-control and cohort studies / P. Zhang, R. Wang, Z. Li [et al.] // Peer J. 2016. Vol. 4. e1797. P. 1—19. DOI: https://doi.org/10.7717/peerj.1797.
  22. Vitamin B(12) Deficiency and Multiple Sclerosis; Is there Any Association? / M. R. Najafi, V. Shaygannajad, M. Mirpourian, Gholamrezaei // Int J Prev Med. 2012. Apr; 3 (4). P. 286—289. PMID: 22624086.
  23. Goldsmith J. R. Vitamin D as an immunomodulator: risks with deficiencies and benefits of supplementation // Healthcare (Basel). Multidisciplinary digital publishing institute. 2015. Vol. 3 (2). Р. 219—232. DOI: https://doi.org/10.3390/healthcare3020219.
  24. Interferon beta and vitamin D synergize to induce immunoregulatory receptors on peripheral blood monocytes of multiple sclerosis patients / A. Waschbisch, N. Sanderson, M. Krumbholz [et al.] // PLoS One. 2014. Vol. 9. No. 12. Р. 1—15. DOI: https://doi.org/10.1371/journal.pone.0115488.
  25. Riccio P. Diet, gut microbiota, and vitamins D + A in multiple sclerosis / P. Riccio, R. Rossano // Neurotherapeutics. 2018. Vol. 15. No. 1. P. 75—91. DOI: https://doi.org/10.1007/s13311-017-0581-4.
  26. Nehreba T. V. Klinichna diahnostyka riznykh typiv perebihu rozsiianoho sklerozu. Zbirka anket: Svidotstvo pro avtorske pravo na naukovyi tvir No. 8675 vid 31.10.2003. (In Ukrainian).
  27. Mielke P. W. Permutation Methods: A Distance Function Approach / P. W. Mielke, K. J. Berry. N.Y. : Springer-Verlag, 2001. 357 p.
  28. Moore D. Bootstrap Methods and Permutation Tests. The Practice of Business Statistics. Ed. T. Hesterberg. N.Y. : Freeman & Co., 2003. Cap. 14. 70 p.
  29. Zaytsev V. M., Liflyandskiy V. G., Marinkin V. I. Prikladnaya meditsinskaya statistika. SPb. : Foliant, 2003. 428 s. (In Russian).
  30. Voloshina N. P. , Vasilovskiy V. V., Chernenko M. E. Vliyaniye infektsionnogo faktora na sostoyaniye gematoentsefalicheskogo baryera u bolnykh rasseyannym sklerozom [The influence of the infectious factor on the state of the blood-brain barrier in patients with multiple sclerosis]. Ukrainskyi visnyk psykhonevrolohii [Ukrainian Bulletin of Psychoneurology]. 2013. Vol. 21, iss. 1 (74). P. 5—7. (In Russian). https://uvnpn.com.ua/upload/iblock/16e/16e03af2aa8182a7e5cdd8132349976c.pdf.