UKRAINS'KYI VISNYK PSYKHONEVROLOHII

The Scientific and Practical Journal of Medicine
ISSN 2079-0325(p)
DOI 10.36927/2079-0325

THE EFFECTIVENESS OF REHABILITATION PROGRAMS FOR THE MOBILIZATION OF COMPENSATORY-ADAPTIVE NEUROPLASTICITY PROCESSES IN PATIENTS WITH PARKINSON’S DISEASE ACCORDING TO INDICATORS OF NEUROTROPHIC FACTORS

Type of Article

In the Section

Index UDK:

Abstract

The purpose of the study: is to objectively evaluate the effectiveness of non-drug rehabilitation programs for patients with Parkinson’s disease (PD) based on indicators of specific neurotrophic factors.

Sixty-one patients with PD: study group — 33 patients, comparison group — 28 people. There were 33 patients in the experimental group and 28 in the comparison group. The patients of the experimental group did daily physical exercises for two months, unlike the representatives of the comparison group.

Patients of both groups were examined for the serum level of the neurotrophic factors: glial cell line-derived neurotrophic factor (GDNF) and cerebral dopamine neurotrophic factor (CDNF).

In patients with PD of the comparison group, the synchronous dynamics of CDNF and GDNF indicators occurred and characterized the individual course of the disease. On the other hand, in the experimental group, asynchrony of changes of these neurotrophic factors in blood serum was observed under conditions of physical exertion.

Summarizing the data obtained, it is necessary to consider many factors that can affect the level of neurotrophic factors. There is probably a genetically determined heterogeneity of the Parkinson’s disease phenotype, which is also expressed by the features of the synchronous dynamics of CDNF and GDNF parameters. It follows that the initial assessment of these parameters in patients with PD is optimal to identify those for whom motor rehabilitation will cause a long and stable positive effect and ensure the course of the disease according to a favourable type

The multidirectional and asynchrony of changes in neurotrophic factors in blood serum under conditions of physical exertion indicates the "sensitivity" of the system of neurotrophic factors to rehabilitation measures, even if they are used for a short time. Since long-term rehabilitation programs provide positive dynamics in the design of neurotrophic factors, a sufficient duration and regularity of non-drug rehabilitation programs are advisable.

Pages

References

  1. Karaban I. M., Karasevych N. V. Ahonisty dofaminovykh retseptoriv u kompleksnii patohenetichnii terapii khvoroby Parkinsona. Mizhnarodnyi nevrolohichnyi zhurnal. 2017. No. 5. S. 52—58. (In Ukrainian). http://dx.doi.org/10.22141/2224-0713.5.91.2017.110857.
  2. Slobodin T. N. Modern ideas about the pathogenesis of Parkinson's disease / T. N. Slobodin // NeuroNEWS. 2011. № 7 (34). С. 24-27.
  3. Bohdanova Y. V. Stan metabolichnykh i rehuliatornykh protsesiv u khvorykh na khvorobu Parkinsona v zalezhnosti vid stupenia tiazhkosti ta skhemy likuvannia. Ukrainskyi visnyk psykhonevrolohii. 2012. T. 29, vyp. 2 (71). S. 5—8. (In Ukrainian).
  4. The Universal Non-Neuronal Nature of Parkinson’s Disease: A Theory / Andre X.C.N. Valente, Altynai Adilbayeva, Tursonjan Tokay, Albert Rizvanov // Cent Asian J Glob Health. 2016 Jun. No. 5(1). Р. 231. DOI: 10.5195/cajgh.2016.231. eCollection 2016.
  5. Voloshyna N. P., Fedosieiev S. V., Bohdanova I. V. Postava i patolohichni pozy u khvorykh z khvoroboiu Parkinsona (diahnostyka, klinichna interpretatsiia). I International Scientific and Theoretical Conference “Interdisciplinary Research: Scientific Horizons and Perspectives”. Vilnius, Republic of Lithuania — 12 March 2021. Vol. 3. P. 74—79. (In Ukrainian).
  6. “Paradoxical Kinesis” is not a  Hallmark of  Parkinson’s disease but a general property of the motor system / Bénédicte Ballanger, Stéphane Thobois, Pierre Baraduc [et al.] // Movement Disorders, Wiley. 2006. No. 21 (9). Р. 1490—1495. DOI: https://doi.org/10.1002/mds.20987.
  7. Circulating levels of neurotrophic factors are unchanged in patients with Parkinson’s disease  / N. Rocha, J. Ferreira, I. Barbosa [et al.] // Arquivos de Neuro-Psiquiatria. 2018. Vol. 76. P. 310—315. DOI: https://doi.org/10.1590/0004-282X20180035.
  8. Moderate-intensity interval training increases serum brain-derived neurotrophic factor level and decreases inflammation in Parkinson’s disease patients / J. A. Zoladz, J. Majerczak, E. Zeligowska [et al.] // J. Physiol. Pharmacol. 2014. Vol. 65(3). P. 441—448.
  9. Neurotrophic factors in Parkinson’s disease are regulated by exercise: Evidence-based practice / P. G. Chaves da Silva, D.   Domingues, L. Alves de  Carvalho [et  al.]  // Journal of  the  Neurological Sciences. 2016. Vol.  363. P.  5—15. DOI: https://doi.org/10.1016/j.jns.2016.02.017.
  10. Effects of physical-exercise-based rehabilitation programs on the quality of life of patients with Parkinson’s disease: a systematic review of randomized controlled trials / F. Cascaes da Silva, R. Iop Rda, P. Domingos dos Santos [et al.] // J Aging Phys Act. 2016. Vol. 24. P. 484—496. DOI: https://doi.org/10.1123/japa.2015-0162.
  11. Lauze M. The effects of physical activity in Parkinson’s disease: a review / M. Lauze, J. F. Daneault, C. Duval // J Parkinsons Dis. 2016. Vol. 6. P. 685—698. DOI: https://doi.org/10.3233/JPD-160790.
  12. Efficacy of community-based physiotherapy networks for patients with Parkinson’s disease: a cluster-randomised trial / M. Munneke, M. J. Nijkrake, S. H. Keus [et al.] // Lancet Neurol. 2010. Vol. 9. P. 46—54. DOI: https://doi.org/10.1016/S1474-4422(09)70327-8.
  13. Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease / G. M. Petzinger, B. E. Fisher, S. McEwen [et al.] // Lancet Neurol. 2013. Vol. 12. P. 716—726. DOI: https://doi.org/10.1016/S1474-4422(13)70123-6.
  14. Enhanced Exercise Therapy in Parkinson’s disease: A comparative effectiveness trial / A. L. Ridgel, B. L. Walter, C. Tatsuoka [et al.] // J Sci Med Sport. 2016. Vol. 19. P. 12—17. DOI: https://doi.org/10.1016/j.jsams.2015.01.005.
  15. Progressive resistance training in Parkinson’s disease: a systematic review and meta-analysis / M. Saltychev, E. Barlund, J. Paltamaa [et al.] // BMJ Open. 2016. Vol. 6. e008756. DOI: https://doi.org/10.1136/bmjopen-2015-008756.
  16. Exercise for people in early- or mid-stage Parkinson disease: a 16-month randomized controlled trial / M. Schenkman, D. A. Hall, A. E. Baron [et al.]t // Phys Ther. 2012. Vol. 92. P. 1395—1410. DOI: https://doi.org/10.2522/ptj.20110472.
  17. Physiotherapy for Parkinson’s disease: a comparison of techniques / C. L. Tomlinson, C. P. Herd, C. E. Clarke [et al.] // Cochrane Database Syst Rev. 2014. Cd002815.
  18. Ahlskog J. E. Does vigorous exercise have a neuroprotective effect in Parkinson disease / J. E. Ahlskog // Neurology. 2011. Vol. 77. P. 288—294. DOI: https://doi.org/10.1212/WNL.0b013e318225ab66.
  19. Hirsch M. A. Exercise, neuroplasticity and Parkinson’s disease / M. A. Hirsch, B. G. Farley // Eur J Phys Rehabil Med. 2009. No. 45(2). С. 215—229.
  20. Exercise-induced increase in brain-derived neurotrophic factor in human Parkinson’s disease: a systematic review and meta-analysis / [M. A. Hirsch, E. E. H. van Wegen, M. A. Newman, P. C. Heyn] // Transl Neurodegener. 2018. Vol. 7. P. 7. DOI: https://doi.org/10.1186/s40035-018-0112-1.
  21. GDNF, NGF and BDNF as therapeutic options for neurodegeneration / Sh. J. Allen, J. J. Watson, D. K. Shoemark [et al.] // Pharmacology & Therapeutics. 2013. Vol. 138(2). Р.155—175. DOI: https://doi.org/10.1016/j.pharmthera.2013.01.004.
  22. Grondin R. Glial cell line-derived neurotrophic factor (GDNF): a drug candidate for the treatment of  Parkinson’s disease / R. Grondin, D. Gash // J Neurol. 1998. Vol. 245. P. 35—42. DOI: https://doi.org/10.1007/PL00007744.
  23. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase / V. B. Matthews, M. B. Aström, M. H. Chan [et al.] // Diabetologia. 2009. Vol. 52. P. 1409—1418. DOI: https://doi.org/10.1007/s00125-009-1364-1.
  24. Pratesi A. Skeletal muscle: an endocrine organ / A.  Pratesi  // Clin. Cases Miner. Bone Metab. 2013. Vol.  P. 11—14. DOI: https://doi.org/10.11138/ccmbm/2013.10.1.011.
  25. Małczyńska-Sims P. The effect of endurance training on brain-derived neurotrophic factor and inflammatory markers in healthy people and Parkinson’s disease. A Narrative Review / P. Małczyńska-Sims, M. Chalimoniuk, A. Sułek // Frontiers in 2020. Vol.  11. P.  1380. DOI: https://doi.org/10.3389/fphys.2020.578981.