UKRAINS'KYI VISNYK PSYKHONEVROLOHII

The Scientific and Practical Journal of Medicine
ISSN 2079-0325(p)
DOI 10.36927/2079-0325

European Academy of Neurology and European Federation of Neurorehabilitation Societies guideline on pharmacological support in early motor rehabilitation after acute ischemic stroke

Type of Article

Abstract

Background and purpose. Early pharmacological support for post-stroke neurorehabilitation has seen an abundance of mixed results from clinical trials, leaving practitioners at a loss regarding the best options to improve patient outcomes. The objective of this evidence-based guideline is to support clinical decision-making of healthcare professionals involved in the recovery of stroke survivors

Methods This guideline was developed using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) framework. PubMed, Cochrane Library and Embase were searched (from database inception to June 2018, inclusive) to identify studies on pharmacological interventions for stroke rehabilitation initiated in the first 7 days (inclusive) after stroke, which were delivered together with neurorehabilitation. A sensitivity analysis was conducted on identified interventions to address results from breaking studies (from end of search to February 2020).

Results. Upon manually screening 17,969 unique database entries (of 57,001 original query results), interventions underwent meta-analysis. Cerebrolysin (30 ml/day, intravenous, minimum 10 days) and citalopram (20 mg/day, oral) are recommended for clinical use for early neurorehabilitation after acute ischaemic stroke. The remaining interventions identified by our systematic search are not recommended for clinical use: amphetamine (5, 10 mg/day, oral), citalopram (10 mg/day, oral), dextroamphetamine (10 mg/day, oral), Di-Huang-Yi-Zhi (2 × 18 g/day, oral), fluoxetine (20 mg/day, oral), lithium (2 × 300 mg/day, oral), MLC601(3 × 400 mg/day, oral), phosphodiesterase-5 inhibitor PF-03049423 (6 mg/day, oral). No recommendation ‘for' or ‘against' is provided for selegiline (5 mg/day, oral). Issues with safety and tolerability were identified for amphetamine, dextroamphetamine, fluoxetine and lithium.

Conclusions. . This guideline provides information for clinicians regarding existing pharmacological support in interventions for neurorecovery after acute ischaemic stroke. Updates to this material will potentially elucidate existing conundrums, improve current recommendations, and hopefully expand therapeutic options for stroke survivors.

Pages

References

  1. Bernhardt J, Hayward KS, Kwakkel G, et Agreed definitions and a  shared vision for new standards in  stroke recovery research: the Stroke Recovery and Rehabilitation Roundtable Taskforce. Int J Stroke. 2017;12(5):444-450. https://doi.org/10.1177/1747493017711816
  2. Dobkin BH. Clinical practice. Rehabilitation after stroke. N Engl J Med. 2005;352(16):1677-1684. https://doi.org/10.1056/NEJMc p043511
  3. Gorelick PB. The global burden of  stroke: persistent and disabling. Lancet Neurol. 2019;18(5):417-418. https://doi.org/10.1016/S1474-4422(19)30030-4
  4. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of  evidence and strength of  BMJ. 2008;336(7650):924-926. https://doi.org/10.1136/bmj.39489.470347.AD
  5. Leone MA, Brainin M, Boon P, et al. Guidance for the preparation of neurological management guidelines by EFNS scientific task forces-revised recommendations 2012. Eur J Neurol. 2013;20(3):410-419. https://doi.org/10.1111/ene.12043
  6. Leone MA, Keindl M, Schapira AH, Deuschl G, Federico A. Practical recommendations for the process of proposing, planning and writing a neurological management guideline by EAN task forces. Eur J Neurol. 2015;22(12):1505-1510. https://doi.org/10.1111/ene.12818
  7. Higgins H, van Limbeek J, Geurts A, Zwarts M. Chapter 8: Assessing risk of bias in  included studies. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds.), Cochrane Handbook for Systematic Reviews of Interventions. 6.2. The Cochrane Collaboration; 2011
  8. Hsu C-C, Sandford B. The  Delphi technique: making sense of  Pract Assess Res  Eval. 2019;12(1):1-5. https://doi.org/10.7275/pdz9-th90
  9. Sprigg N, Willmot MR, Gray LJ, et Amphetamine increases blood pressure and heart rate but has no  effect on motor recovery or cerebral haemodynamics in ischaemic stroke: a  randomized controlled trial (ISRCTN 36285333). J Hum Hypertens. 2007;21(8):616-624. https://doi.org/10.1038/sj.jhh.1002205
  10. Sonde L, Nordstrom M, Nilsson CG, Lokk J, Viitanen M. A doubleblind placebo-controlled study of the effects of amphetamine and physiotherapy after stroke. Cerebrovasc Dis. 2001;12(3):253-257. https://doi.org/10.1159/000047712
  11. Heal DJ, Smith SL, Gosden J, Nutt DJ. Amphetamine, past and present-a pharmacological and clinical perspective. J Psychopharmacol (Oxford). 2013;27(6):479-496. https://doi.org/10.1177/0269881113482532
  12. Muresanu DF, Heiss W-D, Hoemberg V, et al. Cerebrolysin and Recovery After Stroke (CARS): a randomized, placebo-controlled, double-blind, multicenter trial. Stroke. 2016;47(1):151- 159. https://doi.org/10.1161/STROKEAHA.115.009416
  13. Guekht A, Vester J, Heiss W-D, et al. Safety and efficacy of cerebrolysin in motor function recovery after stroke: a meta-analysis of the CARS trials. Neurol Sci. 2017;38(10):1761-1769. https://doi.org/10.1007/sl0072-017-3037-z
  14. Amiri-Nikpour MR, Nazarbaghi S, Ahmadi-Salmasi B, Mokari T, Tahamtan U, Rezaei Y. Cerebrolysin effects on neurological outcomes and cerebral blood flow in acute ischemic stroke. Neuropsychiatr Dis 2014;10:2299-2306. https://doi.org/10.2147/NDT.S75304
  15. Stan A, Birle C, Blesneag A, Iancu M. Cerebrolysin and early neurorehabilitation in patients with acute ischemic stroke: a prospective, randomized, placebo-controlled clinical study. J Med Life. 2017;10(4):216-222
  16. Chang WH, Park C, Kim DY, et Cerebrolysin combined with rehabilitation promotes motor recovery in patients with severe motor impairment after stroke. BMC Neurology. 2016;16(1):31. https://doi.org/10.1186/sl2883-016-0553-z
  17. Bornstein NM, Guekht A, Vester J, et Safety and efficacy of cerebrolysin in early post-stroke recovery: a meta-analysis of nine randomized clinical trials. Neurol Sci. 2018;39(4):629-640. https://doi.org/10.1007/sl0072-017-3214-C
  18. Acler M, Robol E, Fiaschi A, Manganotti P. A double blind placebo RCT to investigate the effects of  serotonergic modulation on  brain excitability and motor recovery in  stroke patients. J  2009;256(7):1152-1158. https://doi.org/10.1007/s00415-009-5093-7
  19. Savadi Oskouie D, Sharifipour E, Sadeghi Bazargani H, et Efficacy of citalopram on  acute ischemic stroke outcome: a randomized clinical trial. Neurorehabil Neural Repair. 2017;31(7):638-647. https://doi.org/10.1177/1545968317704902
  20. Kraglund KL, Mortensen JK, Damsbo AG, et al. Neuroregeneration and vascular protection by citalopram in acute ischemic stroke (TALOS). Stroke. 2018;49(11):2568-2576. https://doi.org/10.1161/STROKEAHA.117.020067
  21. Gladstone DJ, Danells CJ, Armesto A, et al. Physiotherapy coupled with dextroamphetamine for rehabilitation after hemiparetic stroke: a randomized, double-blind, placebo-controlled trial. Stroke. 2006;37(1):179-185. https://doi.org/10.1161/01.STR.0000195169. 42447.78
  22. Louise M, Gunnar WN. Safety of dexamphetamine in acute ischemic stroke. Stroke. 2003;34(2):475-481. https:// doi.org/10.1161/01.STR.0000050161.38263.AE
  23. Yu M, Sun Z-J, Li  L-T, Ge  H-Y, Song C-Q, Wang  A-J. The beneficial effects of the herbal medicine Di-Huang-YinZi  (DHYZ) on  patients with ischemic stroke: a  randomized, placebo controlled clinical study. Complement Ther Med. 2015;23(4):591-597. https://doi.org/10.1016/j.ctim.2015.06.003
  24. Chollet F, Cramer SC, Stinear C, et al. Pharmacological therapies in post stroke recovery: recommendations for future clinical trials. J 2014;261(8):1461-1468. https://doi.org/10.1007/s00415-013-7172-z
  25. Asadollahi M, Ramezani M, Khanmoradi Z, Karimialavijeh The efficacy comparison of  citalopram, fluoxetine, and placebo on  motor recovery after ischemic stroke: a  double-blind placebo-controlled randomized controlled trial. Clin Rehabil. 2018;32(8):1069-1075. https://doi.org/10.1177/0269215518777791
  26. Dennis M, Mead G, Forbes J, et Effects of fluoxetine on  functional outcomes after acute stroke (FOCUS): a  pragmatic, double-blind, randomised, controlled trial. Lancet. 2019;393(10168):265-274. https://doi.org/10.1016/S0140-6736(18)32823-X
  27. Lundstrom E, Isaksson E, Nasman P, et Safety and efficacy of fluoxetine on functional recovery after acute stroke (EFFECTS): a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2020;19(8):661- 669. https://doi.org/10.1016/S1474-4422(20)30219-2
  28. AFFINITY Trial Collaboration. Safety and efficacy of fluoxetine on functional outcome after acute stroke (AFFINITY): a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2020;19(8):651- 660. https://doi.org/10.1016/S1474-4422(20)30207-6
  29. Mohammadianinejad SE, Majdinasab N, Sajedi SA, Abdollahi F, Moqaddam MM, Sadr F. The effect of lithium in poststroke motor recovery: a double-blind, placebo-controlled, randomized clinical trial. Clin Neuropharmacol. 2014;37(3):73- 78. https://doi.org/10.1097/WNF.0000000000000028
  30. Albert U, De Cori D, Blengino G, Bogetto F, Maina Lithium treatment and potential long-term side effects: a systematic review of the literature. Riv Psichiatr. 2014;49(1):12-21. https://doi.org/10.1708/1407.15620
  31. Chen CLH, Young SHY, Gan HH, et al. Chinese medicine neuroaid efficacy on stroke recovery: a double-blind, placebo-controlled, randomized study. Stroke. 2013;44(8):2093-2100. https://doi.org/10.1161/STROKEAHA.113.002055
  32. Di Cesare F, Mancuso J, Woodward P, Bednar MM, Loudon PT, A9541004 Stroke Study Group. Phosphodiesterase-5 inhibitor PF- 03049423 effect on  stroke recovery: a  double-blind, placebo-controlled randomized clinical trial. J Stroke Cerebrovasc Dis. 2016;25(3):642-649. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.11.026
  33. Sivenius J, Sarasoja T, Aaltonen H, Heinonen E, Kilkku O, Reinikainen K. Selegiline treatment facilitates recovery after stroke. Neurorehabil Neural Repair. 2001;15(3):183-190. https://doi.org/10.1177/154596830101500305
  34. Wieloch T, Nikolich K. Mechanisms of neural plasticity following brain injury. Curr Opin Neurobiol. 2006;16(3):258-264. https://doi.org/10.1016/j.conb.2006.05.011
  35. Muresanu DF, Buzoianu A, Florian SI, von Wild T, Muresanu Towards a  roadmap in  brain protection and recovery. J Cell Mol Med. 2012;16(12):2861-2871. https://doi.org/10.1111/j.1582-4934.2012.01605.x
  36. Sahota P, Savitz SI. Investigational therapies for ischemic stroke: neuroprotection and neurorecovery. Neurotherapeutics. 2011;8(3):434-451. https://doi.org/10.1007/s13311-011-0040-6
  37. Muresanu DF, Florian S, Homberg V, et al. Efficacy and safety of cerebrolysin in neurorecovery after moderate-severe traumatic brain injury: results from the CAPTAIN II trial. NeurolSci. 2020;41(5):1171- 1181. https://doi.org/10.1007/s10072-019-04181-y
  38. Muresanu DF, Buzoianu A, Florian SI, von Wild Towards a roadmap in brain protection and recovery. J  Cell Mol Med. 2012;16(12):2861-2871. https://doi.org/10.1111/j.1582-4934.2012.01605.x
  39. Riley C, Hutter-Paier B, Windisch M, Doppler E, Moessler H, Wronski R. A peptide preparation protects cells in organotypic brain slices against cell death after glutamate intoxication. J Neural Transm. 2006;113(1):103-110. https://doi.org/10.1007/s00702-005-0302-8
  40. Wronski R, Tompa P, Hutter-Paier B, Crailsheim K, Friedrich P, Windisch M. Inhibitory effect of  a  brain derived peptide preparation on the Ca++-dependent protease, calpain. J  Neural Transm (Vienna). 2000;107(2):145-157. https://doi.org/10.1007/s007020050013
  41. Siepmann T, Penzlin AI, Kepplinger J, et Selective serotonin reuptake inhibitors to improve outcome in  acute ischemic stroke: possible mechanisms and clinical evidence. Brain Behav. 2015;5(10):e00373. https://doi.org/10.1002/brb3.373
  42. McCann SK, Cadi I, Mead GE, et Efficacy of anti – depressants in  animal models of  ischemic stroke. Stroke. 2014; 45(10):3055-3063. https://doi.org/10.1161/STROKEAHA.114.006304
  43. Mead GE, Hsieh C-F, Lee R, et al. Selective serotonin reuptake inhibitors (SSRIs) for stroke recovery. Cochrane Database Syst Rev. 2012;11:CD009286. https://doi.org/10.1002/14651858. pub2
  44. Ziganshina LE, Abakumova T, Vernay L. Cerebrolysin for acute ischaemic stroke. Cochrane Database Syst Rev. 2016;12:CD007026. https://doi.org/10.1002/14651858. pub4
  45. Hiroki A, Susumu J, Takuya T. Pharmacological enhancement of stroke rehabilitation. Stroke. 2019;50(11):3323-3329. https://doi.org/10.1161/STROKEAHA.119.023720