UKRAINS'KYI VISNYK PSYKHONEVROLOHII

The Scientific and Practical Journal of Medicine
ISSN 2079-0325(p)
DOI 10.36927/2079-0325

Peculiarities of neuroregulatory mechanisms of adaptation under alcohol dependence (experimental study)

Type of Article

In the Section

Abstract

Neurophysiological and biochemical markers of alcohol dependence were identified in a study conducted in laboratory rats at the systemic and molecular levels. It has been shown that long-term alcohol consumption is accompanied by an increase in dopamine levels in the ventral tegmental area and a decrease in GABA and BDNF levels in the hippocampus and serum and leads to attenuation of neocortex control of the limbic emotional-motivational system of the brain. Disturbance of the mechanisms of structural and functional organization of wake-sleep processes and regulation of emotional reactions, which is reflected in the suppression of slow-wave sleep, reduction of paradoxical sleep, inhibition of positive emotional centers, the development of anxiety and depression have been determined.

Pages

References

  1. Spanagel R. Alcoholism: a systems approach from molecular physiology to addictive behavior // Physiological reviews. 2009. Vol. 89 (2). Р. 649—705. DOI: https://doi.org/1152/physrev.00013.2008.
  2. Koob   F., Le  Moal M. Drug addiction, dysregulation of reward, and allostasis // Neuropsychopharmacology. 2001. Vol. 24 (2). P. 97—129. DOI: https://doi.org/10.1016/s0893-133x(00)00195-0.
  3. Russo S. J., Mazei-Robison M. S., Ables J. L., Nestler E. J. Neurotrophic factors and structural plasticity in addiction  // Neuropharmacology. 2009. 56 Suppl 1. P. 73—82. DOI: https://doi.org/1016/j.neuropharm.2008.06.059.
  4. Brain regional gene expression network analysis identifies unique interactions between chronic ethanol exposure and consumption / Smith M. L., Lopez M. F., Wolen A. R. [et al.] // PLoS One. 2020. Vol. 15 (5). P.  1—26. DOI: https://doi.org/1371/journal.pone.0233319.
  5. Vorobyeva T. M. Neurobiology of secondary acquired motivations // International Medical Journal. 2002. № 1-2. С. 211-217.
  6. Koob G.   Volkow N.  D.  Neurocircuitry of  addiction: a neurocircuitry analysis // Lancet Psychiatry. 2016 Aug; 3(8): 760—773. DOI: https://doi.org/10.1016/S2215-0366(16)00104-8.
  7. Veselovska O. V., Shlyakhova A. V., Berchenko O. G., Titkova A. M. Neuroadaptation in the system of emotional reinforcement in alcohol dependence // Ukrainian Journal of Psychoneurology. 2020. Vol. 28, Issue 2 (103). С. 22-5. DOI: https://doi.org/36927/2079-0325-V28-is2-2020-4.
  8. Behavioral and stereological analysis of the prefrontal cortex of rats submitted to chronic alcohol intake / Conte R., Ladd F. V. L., Ladd A. A. B. L. [et al.] // Behav Brain Res. 2019. Vol. 362. P. 21—7. DOI: https://doi.org/1016/j.bbr.2019.01.003.
  9. Wolen A. R., Miles M. F. Identifying gene networks underlying the neurobiology of ethanol and alcoholism  // Alcohol research. 2012. Vol. 34 (3). P. 306—17. PMID: 23134046.
  10. Homberg R., Molteni R., Calabrese F., Riva M.  A. The serotonin-BDNF duo: developmental implications for the vulnerability to  psychopathology  // Neurosci. Biobehav. Rev. 2014. Vol. 43. P. 35—47. DOI: https://doi.org/10.1016/j.neubiorev.2014.03.012.
  11. Rodina V. I., Krupina N. A., Kryzhanovsky G. N., Oknina N. B. Multiparameter method of complex assessment of anxiety-phobic states in rats // Journal of Higher Nervous Activity. 1993. Vol. 5. С. 1006-1016. PMID: 8249450.
  12. Loskutova L. V., Shtark M. B., Epstein O. I. Efficiency of ultralow doses of antibodies to S100 protein and delta sleep-inducing peptide in rats with anxious depression // Bull Exp Biol Med. 2003 Jan; 135 Suppl 7: 20—2. DOI: https://doi.org/1023/A:1024797722719.
  13. Buresh J., Bureshova O., Houston D. P. Methods and basic experiments on the study of brain and behavior. Moscow : Vysshaya shkola; 1991. 399 c.
  14. Olds J., Milner P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain // J. Comp. Physiol. Psychol. 1954. No. 47. P. 419—27. DOI: https://doi.org/10.1037/h0058775.
  15. Drucker-Colin E. R. Chronic administration of chloramphenicol — a protein synthesis inhibitor selectively decreases REM sleep // Behav. and Neurol. Biol. 1980. Vol. 29. P. 410—413. DOI: https://doi.org/10.1016/S0163-1047(80)90449-5.
  16. Brower K. J. Alcohol’s Effects on Sleep in Alcoholics // Alcohol Res Health. 2001. Vol. 25(2). P. 110—125. PMID: 11584550.
  17. Fein G., Cardenas V. A. Neuroplasticity in human alcoholism: studies of extended abstinence with potential treatment implications // Alcohol Research. 2015. Vol. 37 (1). Р. 125—41. PMID: 26259093.
  18. Rachdaoui N., Sarkar D. K., Phil D. Pathophysiology of the effects of alcohol abuse on the endocrine system  // Alcohol Research. 2017. Vol. 38 (2). P. 255—76. PMID: 28988577.
  19. Keiflin R., Janak P. Dopamine prediction errors in  reward learning and addiction: from theory to  neural circuitry // Neuron. 2015. Vol. 88 (2). P. 247—63. DOI: https://doi.org/10.1016/j.neuron.2015.08.037.