UKRAINS'KYI VISNYK PSYKHONEVROLOHII

The Scientific and Practical Journal of Medicine
ISSN 2079-0325(p)
DOI 10.36927/2079-0325

Acute spontaneous intracerebral hemorrhage lethal outcome prediction on the ground of bioelectrical brain activity spectral analysis

Type of Article

In the Section

Index UDK:

Abstract

Aim of the study — to detect electroencephalographic criteria of unfavorable vital outcome of spontaneous supratentorial intracerebral hemorrhage (SSICH). Prospec tive cohor t study of 156 patients (mean age 66,7 ± 0.8 years) in acute period of SSICH on the ground of conservative treatment. Diagnosis was made based on clinical neurological and visualization data. Bioelectrical brain activity was done during first 2 days of the onset. Logistic regressive analysis was used for elaboration of prognostic criteria. It was detected, that risk of lethal SSICH outcome is independently associated with the next spectral EEG-pattern parameters: relative spectral rhythm of δ-band of intact hemisphere (odds ratio (OR) (95 % confidence interval (CI) is equal to 1.12 (1.08— 1.17), p < 0.0001), frontal occipital rhythm gradient of α-band of intact hemisphere (ОR (95 % CI) = 5,96 (1.08—33.04), p = 0.0410) and interhemispheric asymmetry of absolute spectral rhythm power of β2-band (OR (95 % CI) = 0.03 (0.001—0.88), p = 0.0419). These predictors were integrated into the mathematic model for individual prognosis of SSICH lethal outcome (AUC (95 % CI) = 0.95 (0.90—0.98), p < 0.0001, predictive accuracy is equal to 89.7 %). Bilateral predominance of electroencephalographic pattern of δ-band rhythm, inversion of negative frontal occipital rhythm gradients of α-band in both hemispheres, formation of negative interhemispheric asymmetry of absolute spectral rhythm power of δ-band, α2-band in frontal region and θ-, β-bands in parietal occipital regions in first 2 days from the SSICH onset are the EEG criteria for unfavorable vital outcome of SSICH.

Pages

References

  1. Mishchenko T. S. Epidemiology of cerebrovascular diseases and organization of care for patients with cerebral stroke in Ukraine // Ukrainian Vysnik Psychoneurology. 2017. Т. 25, vip. 1 (90). С. 22-24. http://nbuv.gov.ua/UJRN/Uvp_2017_25_1_5.
  2. Katan M., Luft А. Global Burden of Stroke // Semin Neurol. 2018. Vol. 38 (2). P. 208—211. DOI: https://doi.org/10.1055/s-0038-1649503.
  3. Sansing L. Intracerebral Hemorrhage  // Semin Neurol. 2016. Vol. 36 (3). P. 223—224. DOI: https://doi.org/10.1055/s-0036-1583296.
  4. Thabet A. M., Kottapally M., Claude Hemphill J. 3rd. Management of intracerebral hemorrhage  // Handb Clin Neurol. 2017. Vol. 140. P. 177—194. DOI: https://doi.org/10.1016/B978-0-444-63600-3.00011-8.
  5. Veltkamp R., Purrucker J. Management of Spontaneous Intracerebral Hemorrhage  // Curr Neurol Neurosci Rep. 2017. Vol. 17(10). P. 80. DOI: https://doi.org/10.1007/s11910-017-0783-5.
  6. Ziai W. , Carhuapoma J.  R. Intracerebral Hemorrhage  // Continuum (Minneap Minn). 2018. Vol. 24(6). P. 1603—1622. DOI: https://doi.org/10.1212/CON.0000000000000672.
  7. Kirkman M. , Smith M. Supratentorial intracerebral hemorrhage: a  review of  the underlying pathophysiology and its relevance for multimodality neuromonitoring in neurointensive care  // J  Neurosurg Anesthesiol. 2013. Vol.  25(3). P.  228—239. DOI: https://doi.org/10.1097/ANA.0b013e3182836059.
  8. Utility of EEG measures of brain function in patients with acute stroke / J. Wu, R. Srinivasan, E. Burke Quinlan [et  ]  // J Neurophysiol. 2016. Vol. 115(5). P. 2399—2405. DOI: https://doi.org/10.1152/jn.00978.2015.
  9. Kuznietsov A. Prediction of  the functional outcome of cerebral ischemic supratentorial stroke acute period on the basis of  spectral analysis of  the brain bioelectrical activity  // Zaporozhye Medical Journal. 2018. Vol. 20(3). P. 324—329. DOI: https://doi.org/10.14739/2310-1210.2018.3.132127.
  10. Li , Shalabi A., Ji  F., Meng  L. Monitoring cerebral ischemia during carotid endarterectomy and stenting  // J Biomed Res. 2017. Vol. 31(1). P. 11—16. DOI: https://doi.org/10.7555/JBR.31.20150171.
  11. van Putten M. J., Hofmeijer J. EEG Monitoring in Cerebral Ischemia: Basic Concepts and Clinical Applications // J Clin Neurophysiol. 2016. Vol.  33(3). P.  203—210. DOI: https://doi.org/10.1097/WNP.0000000000000272.
  12. Longitudinal quantitative electroencephalographic study in mono-hemispheric stroke patients / F. Zappasodi, F. Tecchio, L. Marzetti [et al.] // Neural Regeneration Research. 2019. Vol. 14(7). P. 1237—1246. DOI: https://doi.org/10.4103/1673-5374.251331.
  13. Transcranial Doppler combined with quantitative EEG brain function monitoring and outcome prediction in patients with severe acute intracerebral hemorrhage / Y. Chen, W. Xu, L. Wang [et al.] // Clin Neurophysiol. 2018. Vol. 129(8). P. 1680—1687. DOI: https://doi.org/10.1186/s13054-018-1951-y.
  14. The role of cEEG as a  predictor of  patient outcome and survival in  patients with intraparenchymal hemorrhages  / M. Purandare, A. N. Ehlert, H. Vaitkevicius [et al.] // Seizure. 2018. Vol. 61. P. 122—127. DOI: https://doi.org/10.1016/j.seizure.2018.08.014.
  15. Unified clinical protocol of emergency, primary, secondary (specialized), tertiary (highly specialized) medical care and medical rehabilitation "Hemorrhagic stroke (intracerebral hematoma, aneurysmal subarachnoid hemorrhage)". URL: http://moz.gov.ua/docfiles/dod275_ukp_2014.pdf.
  16. Finnigan S. , Rose S.  E., Chalk  J.  B. Contralateral hemisphere delta EEG in acute stroke precedes worsening of symptoms and death // Clin Neurophysiol. 2018. Vol. 119(7). P. 1690—1694. DOI: https://doi.org/10.1016/j.clinph.2008.03.006.
  17. A contralesional EEG power increase mediated by interhemispheric disconnection provides negative prognosis in acute stroke / G. Assenza, F. Zappasodi, P. Pasqualetti [et al.] // Restor Neurol Neurosci. 2013. Vol. 31(2). P. 177—188. DOI: https://doi.org/10.3233/RNN-120244.