UKRAINS'KYI VISNYK PSYKHONEVROLOHII

The Scientific and Practical Journal of Medicine
ISSN 2079-0325(p)
DOI 10.36927/2079-0325

Amyloidosis of the central nervous system: common features of various diseases

Type of Article

In the Section

Abstract

The elucidation of the molecular mechanisms of the pathological process is an essential condition for the effective therapy and prevention of the disease. During the last decades the medical and social problems caused by so-called misfolding diseases were becoming acute increasingly. Among such diseases a special place belongs to Alzheimer’s, Parkinson’s and Creutzfeldtd — Jakob’s diseases, which are related to the amyloidosis of the central nervous system. All of them are characterized by progressive and irreversible degeneration of brain tissue, which is associated with the deposition of β-structured protein aggregates and the death of nerve cells. Scientifi c achievements of the recent years reveal the general features of the mechanisms of formation and course of these diseases, substantiate the provision on the formation of the embryo of protein aggregation as a key process that leads the course of the disease to a qualitatively new, irreversibly progressive level.

Pages

References

  1. Ostapchenko L. Biochemistry: a textbook. К. : Kyiv University, 2012. 796 с.
  2. Verevka S. Formation and recognition of  superficial microclusters as  the integral part of  processing of  proteins  // In: Protein Research Progress: New  Research  / Boscoe  A.  B., Listov C. R., Eds. NY : Nova Science Publishers, 2008, P. 9—15.
  3. Zabolotny D. I. and Verevka S. V. Inter-Molecular Coordination of the Proteins at Normal and Pathological State // In: Molecular Pathology of Proteins  / D.    Zabolotnyi, Ed. NY  : Nova Science Publishers, 2009. P. 1—22.
  4. Buxbaum J., Linke R. A molecular history of amyloidoses // J. Mol. Biol. 2012. Vol. 421, No. 2—3. P. 142—159. DOI: https://doi.org/10.1016/j.jmb.2012.01.024.
  5. Smirnov V. P., Fadeev M. Yu. Diseases of accumulation (thesaurismoses). N. Novgorod : Izd-vo NGMA, 2007, 104 p.
  6. Sideras K., Gertz M. Amyloidosis // Adv. Clin. Chem. 2009. Vol. 47. P. 1—44. PMID: 19634775.
  7. Soto C. Unfolding the role of protein misfolding in neurodegene rative diseases // Nat. Rev. Neurosci. 2003. Vol. 4. P. 49—60. DOI: https://doi.org/10.1038/nrn1007.
  8. Mukherjee A., Moralez-Scheiching D., Butler P., Soto Type 2 diabetes mellitus as  a  protein misfolding disease  // Trends Mol. Med. 2015. Vol. 21, No. 7. P. 439—449. DOI: https://doi.org/10.1016/j.molmed.2015.04.005.
  9. Querfurth H., LaFerla F. Alzheimer’s disease // N. Engl. J. Med. 2010. Vol. 362, No. 4. P. 329—344. DOI: https://doi.org/10.1056/NEJMra0909142.
  10. Cole S., Vassar R. Isoprenoids in Alzheimer’s disease: a complex relationship // Neurol. Dis. 2006. Vol. 22, No. 2. P. 209—222. URL: https://doi.org/10.1016/j.nbd.2005.11.007.
  11. Walker F. Huntington’s disease // Lancet. 2007. 369 (9957). P. 218—228. DOI: https://doi.org/10.1016/S0140-6736(07)60111-1.
  12. Davie C. A review of Parkinson’s disease // Br. Med. Bull. 2008. Vol. 86. P. 109—127. DOI: https://doi.org/10.1093/bmb/ldn013.
  13. Kazakov V. N., Shlopov V. G. Prion diseases. Donetsk : Izdvo "Donbass", 2009. 444 с.
  14. Vinogradova R.P., Berdyshev G.D., Verevka S.V. Biochemistry and genetics of prions, causative agents of spongiform encephalopathies. K.: Phytosociocenter, 2000. 56 с.
  15. Prusiner S. Neurodegenerative diseases and prions // N. J.  Med. 2001. Vol.  344, No.  20. P.  1516—1522. DOI: https://doi.org/10.1056/NEJM200105173442006.
  16. Normal host prion protein necessary for scrapie-induced neurotoxicity / Brandner , Isenmann  S., Raeber  A. [et  al.]  // Nature. 1996. 379, No. 6563. P. 339—343. DOI: https://doi.org/10.1038/379339a0.
  17. Payne R., Krakauer, D. The paradoxal dynamics of prion disease latency // J. Theor. Biol. 1998. Vol. 191. P. 345—352. DOI: https://doi.org/10.1006/jtbi.1997.0627.
  18. Prusiner S. Prions // Proc. Natl. Acad. Sci. USA. 1998. Vol. 95. P. 13363—13383. PMID: 9811807.
  19. Verevka S. V. Parametabolic β-Aggregation of proteins: familiar mechanisms with diverse sequels // In: Advances in Medicine and Biology (Berhardt L. V., Ed.). NY : Nova Science Publishers, 2013. Vol. 72. P. 29—48.
  20. Zabolotnyi DI, Belousova AO, Zarytska IS, Verevka SV Autochthonous β-aggregation of proteins: causes, molecular mechanisms and pathological consequences // Journal of the National Academy of Medical Sciences of Ukraine. 2014. Т. 4, № 4. С. 385-392.
  21. Castilla J., Saa P., Hetz C., Soto C. In vitro generation of infectious scrapie prions // Cell. 2005. Vol. 121, No. 2. P. 195—206. DOI: https://doi.org/10.1016/j.cell.2005.02.011.
  22. Caughey B., Raymond G. The scrapie-associated form of PrP is made from a cell surface precursor that is both protease- and phospholipase-sensitive // J. Biol. Chem. 1991. Vol. 266, No. 27. P. 18217—18223. PMID: 1680859.
  23. Verevka S. CNS Amyloidosis and Diabetes Mellitus: Vicious Circles of Misfolding  // In: Diabetes Mellitus Research Advances (Huber M. N., Ed.). NY : Nova Science Publishers, 2009. P. 169—178.
  24. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host / Meyer-Luehmann M., Coomaraswamy J., Bolmont T. [et al.] // Science. 2006. 313, No. 5794. P. 1781—1784. DOI: https://doi.org/10.1126/science.1131864.
  25. Ma J., Lindquist S. Conversion of PrP to a self-preparating PrPSc-like conformation in cytosol // Science. 2002. Vol. 298(5599). P. 1785—8. DOI: https://doi.org/10.1126/science.1073619.
  26. Jahn T., Radford S. The Yin and Yang of  protein folding  // FEBS Journ. 2005. Vol.  272, No.  P.  5962—5970. DOI: https://doi.org/10.1111/j.1742-4658.2005.05021.x.
  27. Survival of dopaminergic amacrine cells after nearinfra red light treatment in MPTP-treated mice  / Peoples  , Shaw V., Stone J. [et  al.]  // ISRN Neurology. 2012. P.  1—8. DOI: https://doi.org/10.5402/2012/850150.