UKRAINS'KYI VISNYK PSYKHONEVROLOHII

The Scientific and Practical Journal of Medicine
ISSN 2079-0325(p)
DOI 10.36927/2079-0325

Sensitivity of cognitive functions to the burden of cerebral small vessel disease

Type of Article

In the Section

Abstract

The cerebral small vessel disease (сSVD) is one of the main causes of cognitive decline. The quantity/quality of MRI-sings of the disease can aff ect the profi le of diff erent cognitive domains involved in pathological changes.

The main group (MG) consisted of 50 patients (including 30 women) aged 45 to 72 years (mean age 62.05 ± 1.46 years) with MRI signs of cSVD and without history of stroke. The MG was divided into 2 subgroups according to the scale of the "total score for the cSVD": 1st with patients (n = 20) with 1—2 points of the cSVD burden, and 2nd with patients (n = 20) with 3—4 points of the cSVD burden. The control group (CG) consisted of 20 practically healthy persons (including 12 women) aged 48—76 years (mean age 57.36 ± 3.79 years). In both groups, the state of cognitive functions was studied by means of computer neurocognitive testing (CNT) on a tablet personal computer (PC) with a touch-screen with using of Tempus Test Set battery consisted of "odd-ball" task, Go/NoGo task, Eriksen Flanker task, Stroop eff ect, Numerical Stroop eff ect, continuous recognition task. To investigate the neurophysiological components of cognitive functioning during the performance of odd-ball tasks in both groups, cognitive-induced event-related potentials (ERP) were studied.

The results of CNT and ERP showed a sensitivity to the burden of cSVD. This sensitivity was manifested in a tendency to decrease the effi ciency of passing of tests and increase of the amount of affected cognitive functions with an increase in the score of the cSVD scale. Attention (vigilance, selectivity, concentration, retention), information processing speed, and executive functions (cognitive fl exibility, planning and control of actions) were a most vulnerable to the cSVD and a sensitive to the cSVD burden. The emotional component contributes substantially to the cognitive changes in cSVD. For patients with cSVD, the CNT by means of a tablet PC with a touch screen is an accurate, fast, cost-eff ective method for assessing and monitoring of cognitive impairment.

Pages

References

  1. Structural network connectivity and cognition in cerebral small vessel disease / А. М. Tuladhar, Е. van Dijk, М. Р. Zwiers [et al.] // Hum. Brain Марр. 2016. Vol. 37. No. 1. P. 300—310. DOI: https://doi.org/10.1002/hbm.23032.
  2. Structural network efficiency is associated with cognitive impairment in small-vessel disease / А. J. Lawrence, А. W. Chung, R. G. Morris [et al.] // Neurology. 2014. Vol. 83. No. 4. P. 304—311. DOI: https://doi.org/10.1212/WNL.0000000000000612.
  3. Cerebral small vessel disease: Capillary pathways to stroke and cognitive decline / L. Østergaard, T. S. Engedal, F. Moreton [et al.] // J. Cereb. Blood Flow Metab. 2016. Vol. 36. No. 2. P. 302—325. DOI: https://doi.org/10.1177/0271678X15606723.
  4. Capillary dysfunction: its detection and causative role in dementias and stroke / L. Østergaard, S. N. Jespersen, T. S. Engedal [et al.] // Curr. Neurol. Neurosci. Rep. 2015. Vol. 15. No. 6. P. 37. DOI: https://doi.org/10.1007/s11910-015-0557-x.
  5. Cognitive impairment in small vessel disease of the brain / TS Mishchenko, I. Nikishkova, V. Mishchenko, D. Kutikov // Ukrainian Journal of Psychoneurology. 2017. Vol. 25, No. 3 (92). С. 8-12.
  6. Nikishkova I.M., Mishchenko V.M., Kutikov D.O. "Frontal" nature of cognitive impairment in small vessel disease of the brain // Ibid. 2017. Vol. 25, No. 1 (90). С. 95-96.
  7. Zakharov V. V., Vakhnina N. V. Differential diagnosis and treatment of cognitive disorders // Ros. med. journal "Neurology". 2013. № 10. С. 518-523.
  8. White matter microstructural damage in small vessel disease is associated with Montreal Cognitive Assessment but not with Mini Mental State Examination performances: vascular mild cognitive impairment Tuscany study / М. Pasi, Е. Salvadori, А. Poggesi [et al.] // Stroke. 2015. Vol. 46. No. 1. P. 262—264. DOI: https://doi.org/10.1161/STROKEAHA.114.007553.
  9. Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden / J. Staals, S. Makin, F. Doubal [et al.] // Neurology. 2014. Vol. 83. No. 14. P. 1228—1234. DOI: https://doi.org/10.1212/WNL.0000000000000837.
  10. A. s. 78399 of Ukraine. Computer program "Cross-platform language ecosystem of software components Prototypus Operationis Testificationis pro Morbi Anime et Nervi" ("Ecosystem of software components POTesMANU") / D. O. Kutikov (Ukraine). No. 79539; declared 11.04.2018; reg. 19.04.2018; published on July 27, 2018, Bulletin. Copyright and Related Rights No. 49. С. 184.
  11. Gualtieri C. T., Johnson L. G. Neurocognitive testing supports a broader concept of mild cognitive impairment // Am. J. Alzheimers Dis. Other Demen. 2005. Vol. 20(6). P. 359—366. DOI: https://doi.org/10.1177/153331750502000607.
  12. Validity of a novel computerized cognitive battery for mild cognitive impairment / T. Dwolatzky, V. Whitehead, G. Doniger [et al.] // BMC Geriatrics. 2003. Vol. 3. P. 4—15. DOI: https://doi.org/10.1186/1471-2318-3-4.
  13. Intraindividual cognitive decline using a brief computerized cognitive screening test / Darby D. G., Pietrzak R. H., Fredrickson J. [et al.] // Alzheimers Dement. 2012. Vol. 8. P. 95—104. DOI: https://doi.org/10.1016/j.jalz.2010.12.009.
  14. Squires N. K., Squires K. C., Hillyard S. A. Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man // Electroencephalography and Clinical Neurophysiology. 1975. Vol. 38. No. 4. P. 387—401. URL : https://doi.org/10.1016/0013-4694(75)90263-1.
  15. Huettel S., McCarthy G. What is odd about the odd-ball task? Prefrontal cortex is activated by dynamic changes in response strategy // Neuropsychologia. 2004. Vol. 42. P. 379—386.
  16. Eriksen B. A., Eriksen C. W. Effects of noise letters upon identification of a target letter in a non-search task // Perception and Psychophysics. 1974. Vol. 16. P. 143—149.
  17. Stroop J. R. Studies of interference in serial verbal reactions // J. Experimental. Psychology. 1935. Vol. 18. No. 6. P. 643—662.
  18. Henik A., Tzelgov J. Is three greater than five: The relation between physical and semantic size in comparison tasks // Memory & Cognition. 1982. Vol. 10. No. 4. P. 389—395.
  19. Craik F. I. M., Tulving E. Depth of processing and the retention of words in episodic memory // J. Experimental Psychology. 1975. Vol. 104. P. 268—294.
  20. American Clinical Neurophysiology Society Guideline 3: A proposal for standard montages to be used in clinical EEG / J. N. Acharya, A. J. Hani, P. D. Thirumala, T. N. Tsuchida // J. Clin. Neurophysiol. 2016. Vol. 33. P. 312—316. DOI: https://doi.org/10.1097/WNP.0000000000000317.
  21. A Unifying Information-Theoretic Framework for Independent Component Analysis / T.-W. Lee, M. Girolami, A. J. Bell, T. J. Sejnowski // Computers & Mathematics with Application. 2000. Vol. 39. P. 1—21. URL : https://doi.org/10.1016/S0898-1221(00)00101-2.
  22. Luck S. J. An Introduction to the Event-Related Potential Technique. Second Edition. Cambridge, MA : MIT Press, 2014. 416 pp.
  23. Naatanen R. Attention and brain functions / ed. by Sokolov E. N. Moscow State University. N. M. : Izd-vo MSU, 1998. 559 с.
  24. Gnezditsky V. В. Evoked brain potentials in clinical practice. Taganrog : TRTU Publishing House, 1997. 252 с.
  25. Gnezditsky V. V. Inverse task of EEG and clinical electroencephalography (mapping and localization of sources of brain electrical activity). М. MEDpressinform, 2004. 624 с.