UKRAINS'KYI VISNYK PSYKHONEVROLOHII

The Scientific and Practical Journal of Medicine
ISSN 2079-0325(p)
DOI 10.36927/2079-0325

Neuroprotective eff ect of cerebrolyzin at patients with amyotrophic lateral sclerosis

Type of Article

In the Section

Index UDK:

Abstract

Amyotrophic lateral sclerosis (ALS) — is the neurodegenerative disease, which is accompanied by death of central and peri pheral motoneurons, by the steady progressing and fatal outcome. The prevalence of ALS in the world is 2—5/100 thousands of people in a year, thus at the last time there were marked the tendencies to the growth of ALS in all age groups. At the present time it is well known that the key factor of the pathogenesis of neuron’s death at ALS is the apoptosis activation. The only medicinal preparation, which is linked with the depressing of freeing of the glutamate by blocking the voltage-independent natrium canals, is Rylutek, which prolongs the life time, on the average, for 3 months. Another perspective direction of the pathogenetic treating of ALS is the usage of the drugs with neurotrophic action. Cerebrolysin it the only nootropic preparation with the neurotrophic action. It possesses such neurotrophic factors as NGF, CNTF, GDNF, IGF-1 and IGF-2, BDNF. It is known that neuron’s death arises as a result of deprivation of the neurotrophic factors. According to this, the application of Cerebrolysin in high doses is grounded for the given disease that also promotes the stabilization of the pathological process during 2 months.

Pages

References

  1. Zavalishin I. A., Zakharova M. N. Amyotrophic lateral sclerosis // Neurol. jur. nal. - 1998. - № 4. - С. 4-7.
  2. Amyotrophic lateral sclerosis : a guide for doctors / ed. by I. A. Zavalishin. A. Zavalishin. Moscow : Eurasia+, 2007. 447 с.
  3. Lokshina A. B., Damulin I. B. Lateral myotrophic sclerosis // Poc. med. zhurnal. - M., 2004. - № 24. - C. 32-37.
  4. Skvortsova C. A., Limborskaya S. A., Slominsky P. A. // Journal of Neurology and Psychiatry. C. C. Korsakova. - 2003; 103 (II): 46-52.
  5. Skvortsova V. I., Levitsky G. N. Modern ideas about etiology, pathogenesis and treatment of motor neuron disease // Consilium medicum. - T. 6, № 8. - 2004.
  6. Molecular mechanisms of motor neuron disease development / C. A. Skvortsova, S. A. Limborskaya, K. B. Sokolov, G. H. Levitsky // Journal of Neurology and Psychiatry. C. C. Korsakov. 2005. Т. 102. № 4. C. 68-76.
  7. Yakhno N. N. Diseases of the nervous system / N. N. Yakhno, D. R. Shtulman. - Moscow: Medicine, 2001. - 744 с.
  8. Adler H. // ALS association journ. August/September 2004. — Vol. 19. — № 5.
  9. Adams R. ALS Therapies — How do we find a cure? Merit Cudkowicz, M. D. — USA 15th Annual International Symposium on ALS-MND. — The ALS Association.htm
  10. Appel S. ALS: immune factors in motor neuron cell injury. In: Neurobiology of ALS: education program syllabus. — Minneapolis: American Academy of Neurology, 1999: 101—13.
  11. Aronica, E., D. Troost, et al. Expression and regulation of voltage-gated sodium channel beta1 subunit protein in human gliosis-associated pathologies // Acta Neuropathol (Berl). — 2003; 105(5): 515—23.
  12. Barouch, R. & Schwartz, M. Efficient three-drug cocktail for disease induced by mutant superoxide dismutase // FASEB J. — 2002; 16: 1304—1306.
  13. Bendotti C. Calvaresi N., Chiveri L. et al. Early vacuolization and mitochondrial damage in motor neurons of FALS mice are not associated with apoptosis or with changes in cytochrome oxidase histochemical reactivity // J. Neurol Sci. — 2001; 191: 1—2: 25—33.
  14. Boado R. J. Brain-derived peptides increase the expression of a blood-brain barrier GLUT1 glucose transporter reporter gene // Neurosci. Lett. — 1996; 220: 53—56.
  15. Bongioanni P. Reali C, Sogos V. Ciliary neurotrophic factor (CNTF) for amyotrophic lateral sclerosis/motor neuron disease: Cochrane Database Syst Rev. — 2004; (3): CDOO4302.
  16. Brooks B. R.: El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases / Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and t. // J. Neurol Sci. — 1994; 124: 96—107.
  17. Butovsky, O., Hauben, E. & Schwartz, M. // FASEB J. — 2001; 15: 1065—1067.
  18. Casoni F., Basso M., Massignan T. et al. Protein nitration in a mouse model of familial amyotrophic lateral sclerosis: possible multifunctional role in the pathogenesis // J. Biol Chem. — 2005 Apr 22; 280(16): 16295—304.
  19. Chen M., Valenzuela R. M., Dhib-Jalbut S. Glatiramer acetatereactive T cells produce brain-derived neurotrophic factor // J. Neural Sci. — 2003.
  20. Chen M. et al. Trophic factors counteract elevated FGF-2 — induced inhibition of adult neurogenesis // Neurobiology of Aging. — 2007; Aug. 28(8): 1148—62.
  21. Cole N., Siddique T. Genetic disorders of motor neurons // Semin. Neurol. — 1999; 19: 407—418.
  22. Colom LV, Alexianu ME, Mosier DR et al. Amyotrophic lateral sclerosis immunoglobulins increase intracellular calcium m a motoneuron cell line // Exp Neurol. — 1997; 146: 354—360.
  23. Consilvio C., Vincent A. M., Feldman E. L. Neuroinflammation, COX-2, and ALS — a dual role? // Exp Neurol. — 2004 May; 187(l): 1—10.
  24. Cote F., Collard J. F., Julien J. P. Progressive neuronopathy in trans genic mice expressing the human neurofilament heavy gene: a mou se model of amyotrophic lateral sclerosis // Cell. — 1993; 73: 35—46.
  25. Crow J. P., Sampson J. B., Zhuang Y. et al. Decreased zinc affinity of amyotrophic lateral sclerosis-associated superoxide dismutase mutants leads to enhanced catalysis of tyrosine nitration by peroxinitrite // J. Neurochem. — 1997; 69: 1936—1944.
  26. Angelov D. N., Waibel S., Guntinas-Lichius O. et al. Therapeutic vaccine for acute and chronic motoneuron diseases: Implications for amyotrophic lateral sclerosis // Neurology. — 2006 Mar 16; 17(4): 345—6.
  27. Day W. A., Koishi K., Nukuda H., McLennan I. S. Transforming growth factor-beta 2 causes an acute improvement in the motor performance of transgenic ALS mice // Neurobiol. Dis. — 2005 JunJul; 19(1—2): 323—30.
  28. del Aguila, M. A., W. T. Longstreth, Jr., et al. (2003). Prognosis in amyotrophic lateral sclerosis: a population-based study // Neurology. — 60(5): 813—9.
  29. Dewil M., Schurmans C., Starckx S. et al. Role of matrix metalloproteinase-9 in a mouse model for amyotrophic lateral sclerosis // Neuroreport. — 2005 Mar 15; 16(4): 321—4.
  30. Elam, J. S., K. Malek, et al. (2003). An alternative mechanism of bicarbonate-mediated peroxidation by copper-zinc superoxide dismutase // J. Biol. Chem. — 2003. — 10(8): 542—58.
  31. Hadano, S., Yanagisava, Y., Skaug, J. et al. // Genomics. — 2001; 71, 200—213.
  32. Hampson D. R., Windisch M., Baskys A. Increased binding of BDNF to trkB induced by the antidementia drug Cerebrolysin // Society for Neuroscience. — 1997, 23: 1996.
  33. Hartbauer M, Hutter-Paier B., et. al. // J. Neural Transm. — 2001.
  34. Howland D. S., Liu J., She Y. et al. Focal loss of the glutamate trans porter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS) // Proc. Natl. Acad. Sci USA. — 2002; 99: 3: 1604—1609.
  35. Ivasaki Y., Ikeda K. Cotreatment of amyotrophic lateral sclerosis patients. Rinsho Shinkeigaku. — 1999; 39(12): 1253—1255.
  36. Janson C. G., Rameh T. M., During M. J. et. al. Human intrathecal transplantation of peripheral blood stem cells in amyotrophic lateral sclerosis // J. Hematother. Stem Cell Res. — 2001; 10: 913—915.
  37. Julien J. P., Beaulieu J. M. Cytoskeletal abnormalities in amyotrophic lateral sclerosis: beneficial or detrimental effects? // J. Neurol. Sci. — 2000; 180: 7—14.
  38. Kaspar B., Llado J., Sherkat N. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model // Science. — 2003; 301(5634): 839—842.
  39. Kaspar B. K. Frost L. M., Christian L. et al. Synergy of insulinlike growth factor-1 and exercise in amyotrophic lateral sclerosis // Neuropathol. Appl. Neurobiol. — 2003 Dec; 29(6): 329—48.
  40. Kikuchi, S., Shinpo K. et al. (2003). Glycation-a sweet tempter for neuronal death // Brain Res Brain Res Rev. — 41(2—3): 306—23.
  41. Kikuchi, H., T. Yamada, et al. Involvement of cathepsin B in the motor neuron degeneration of amyotrophic lateral sclerosis // Acta Neuropathol (Berl). — 2003; 105(5): 462—8.
  42. Kipnis J., Yoles E., Porat Z. et al. T-cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies // PNAS. — 2000; 97: 7446—7451.
  43. Kriz, J., G. Gowing, et al. Efficient three-drug cocktail for disease induced by mutant superoxide dismutase // Ann Neurol. — 2003; 53(4): 429—36.
  44. Lewis P., Rowland, Neil A. Shneider, Amyotrophic lateral sclerosis // N. Engl. J. Med. — Vol. 344, № 22: 1688—1700.
  45. Lin C. L., Bristol L. A., Jin L. et al. Aberrant RNA processing in a neurodegenerative disease: the cause for absent EEAT2, a glutamate transporter, in amyotrophic lateral sclerosis // Neuron. — 1998; 20: 589—602.
  46. Lorenzl, S., D. S. Albers et al. Tissue inhibitors of matrix metalloproteinases are elevated in cerebrospinal fluid of neurodegenerative diseases // J. Neurol. Sci. — 2003; 207(1—2): 71—6.
  47. Ludolph, A. C., & Munch, C. // Drug Metab. Rev. — 1999; 31, 619—634. 48. Majoor-Krakauer, D., P. J. Willems, et al. Genetic epidemiology of amyotrophic lateral sclerosis // Clin. Genet. — 2003; 63(2): 83—101.
  48. McGeer P. L, McGeer E. G. Inflammatory processes in amyo trophic lateral sclerosis // Muscle Nerve. — 2002 Oct; 26(4): 459—70.
  49. Mhatre M, Floyd RA, Hensley K. Oxidative stress and neuroinflammation in Alzheimer’s disease and amyotrophic lateral sclerosis: common links and potential therapeutic targets // J. Alzheimers Dis. — 2004 Apr; 6(2): 147—57.
  50. Miller R. G., Bradley W. G., Gelinal D. F. et al. Genetic epidemiology of amyotrophic lateral sclerosis // Continuum. — 2002; 8 (4): 1—227.
  51. Moalem, G., Monsonego, A., Shani, Y., Cohen, I. R. & Schwartz, M. Efficient three-drug cocktail for disease induced by mutant superoxide dismutase // FASEB J. — 1999; 13, 1207—1217.
  52. Moris, G. and Vega, J. Neurotrophic factors: basis for their clinical application // Neurologia. — 2003; 18(1): 18—28
  53. Norris F. N. J. Involvement of cathepsin B in the motor neuron degeneration of amyotrophic lateral sclerosis // Neurol Sci. — 1993; 118: 48—55.
  54. Ono S., Toyokura Y., Mannen T. et al. Amyotrophic lateral sclerosis: histologic, histochemical and ultrastructural abnormalities of skin. // Neurology. — 1986; 36: 948—956.
  55. Potter, S. Z. and Valentine, J. S. The perplexing role of copper-zinc superoxide dismutase in amyotrophic lateral sclerosis (Lou Gehrig’s disease) // J. Biol. Inorg Chem. — 2003.
  56. Rosen, D. R., Siddique, T., Patterson, D. et al. Cortical projections to spinal motoneurons: changes with aging and amyotrophic lateral sclerosis // Nature. — 1993; 362, 59—62.
  57. Rothstein J. D. Excitotoxity and neurodegeneration in amyotrophic lateral sclerosis // Clin. Neurosci. — 1995; 3: 348—59.
  58. Satou T., et al. Morphological observation of effects of Cerebrolysin on cultured neuronal cells. In: Nicolini M., Zatta P. F., Coraine B., eds. Alzheimer’s Disease and Related Disorders. — Oxford: Pergamon Press., 1993. — Р. 195—196.
  59. Satou T., et al. Neurotrophic-like effects of FPF-1070 on cultured neurons from chick embryonic dorsal root ganglia // Jpn J. Pharmacol. Ther. — 1994; 22/4: 205—212.
  60. Schwartz/ M. & Kipnis, J. Amyotrophic lateral sclerosis // Trends Immunol. — 2002; 23: 530—534.
  61. Shimazu S. et. al. Physiology of fatigue in amyotrophic lateral sclerosis // Neurology. — 1995, 45: 733—740.
  62. Strange R. W., Antonyuk S., Hough M. A. et al. The structure of holo and metal-deficient wild-type human Cu, Zn-superoxide dismutase and its relevance to familial amyotrophic lateral sclerosis // J. Mol. Biol. — 2003; 328: 4: 877—891.
  63. Valentine, J. S. and Hart P. J. Bioinorganic Chemistry Special Feature: Misfolded Cu, Zn-SOD and amyotrophic lateral sclerosis // Proc Natl Acad Sci USA. — 2003; 100(7): 3617—22.
  64. Vedlink J. H., Van den Berg L. H., Wokke JHJ. Diagnosis and Management of Peripheral Nerve Disorders // J. Neurol. — 2004; 251: 491—500. 66. Vema A., Berger JR., Snodgrass S., Petito C. Motor neuron disease: a paraneoplastic process associated with anti-hu antibody and small-cell lung carcinoma // Ann. Neurol. — 1996; 40: 112—6.
  65. Waldmeier, P. C. Prospects for antiapoptotic drug therapy of neurodegenerative diseases // Prog Neuropsychopharmacol Biol. Psychiatry. — 2003; 27(2): 303—21.
  66. Weydt P., Weiss M. D., Moller T., Carter G. T. Neuro-inflammation as a therapeutic target in amyotrophic lateral sclerosis // Curr. Opin Investig Drugs. — 2002 Dec; 3(12): 1720—4.
  67. Weydt P., Moller T. Neuroinflammation in the pathogenesis of amyotrophic lateral sclerosis // Neuroreport. — 2005 Apr 25; 16(6): 527—31.
  68. Wilczak N., de Keyser J. Insulin-like growth factor system in amyotrophic lateral sclerosis // Endocr. Dev. — 2005; 9: 160—9.
  69. Wood J. D., Beaujeux T. P., Shaw P. J. Protein aggregation in motor neurone disorders // Neuropathol. Appl. Neurobiol. — 2003 Dec; 29(6): 529—45.
  70. Wu, S. N. Large-conductance Ca(2+)-activated K(+) channels: physiological role and pharmacology // Curr. Med. Chem. — 2003; 10(8): 649—61.
  71. Xu Z., Jung C. Higgins C., Levine J., Kong J. Mitochondrial degeneration in amyotrophic lateral sclerosis // J. Bioenerg Biomembr. — 2004 Aug; 36(4): 395—9.
  72. Yoles, E., Hauben, E., Palgi, O. et al. Multifocal motor neuropathy: clinical and electrophysiological findings // J. Neurosci. — 2001; 21, 3740—3748. 75. Ziernssen T., Kumpfel T., Klinkert W. E. F. et al. Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNR implication for multiple sclerosis therapy // Brain. — 2002; 125; 11: 2381—2391. 76. Zhang R., Gascon R., Miller R. G. et al. Evidence for systemic immune system alterations in sporadic amyotrophic lateral sclerosis (sALS) // J. Neuroimmunol. — 2005 Feb; 159(1—2): 215—24. 77. Ziernssen T., Kumpfel T., Klinkert W. E. F. et al. Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNR implication for multiple sclerosis therapy // Brain. — 2002; 125; 11: 2381—2391.