Український вісник ПСИХОНЕВРОЛОГІЇ

Науково-практичний медичний журнал
ISSN 2079-0325(p)
DOI 10.36927/2079-0325

ТЕОРІЇ ПАТОГЕНЕЗУ ТА ЗНАЧУЩІСТЬ УРАЖЕНЬ СПИННОГО МОЗКУ ПРИ РОЗСІЯНОМУ СКЛЕРОЗІ (огляд літератури)

Тип статті

Рубрика

Індекс УДК:

Анотація

Статтю присвячено сучасним поглядам на ураження спинного мозку (СМ) при розсіяному склерозі (РС), поширена демієлінізація якого має високий запальний потенціал та є однією з основних детермінант незворотної інвалідності при прогресуючому перебігу хвороби. У стислій формі викладено сутність декількох запропонованих у різний час теорій щодо механізму патогенезу уражень СМ, пов’язаних з аутоімунними запаленням та атрофією. Наведені у огляді дані про поширеність, діагностичну цінність і прогностичну значущість уражень спинного мозку при РС підкреслюють необхідність не тільки враховувати наявність аутоімунних запалення та атрофії СМ при прийнятті рішень щодо тактики лікування, але й відмовитися від принципу економічної доцільності сканування спинного мозку за відсутності нових симптомів, пов’язаних з його ураженням.

Сторінки

Рік / Номер журналу

Перелiк використаної лiтератури

  1. Ordoñez-Rodriguez A, Roman P, Rueda-Ruzafa L, Campos-Rios A, Cardona D. Changes in Gut Microbiota and Multiple Sclerosis: A Systematic Review. Int J Environ Res Public Health. 2023;20(5):4624. Published 2023 Mar 6. doi: https://doi.org/10.3390/ ijerph20054624.
  2. Walton C, King R, Rechtman L, et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult Scler. 2020;26(14):1816-1821. doi: https://doi.org/10.1177/1352458520970841.
  3. MSIF Atlas of MS 3rd edition. MS International Foundation. 2024. URL: https://www.atlasofms.org/map/global/epidemiology/number-of-people-with-ms.
  4. Dobson R, Giovannoni G. Multiple sclerosis — a review. Eur. J. Neurol. 2019;26(1):27-40. doi: https://doi.org/10.1111/ene.13819.
  5. Kobelt G, Thompson A, Berg J, et al. New insights into the burden and costs of multiple sclerosis in Europe. Mult Scler. 2017;23(8):1123-1136. doi: https://doi.org/10.1177/1352458517694432.
  6. Goodwin BJ, Mahmud R, TomThundyil S, Rivera-Colon G, Murray VW, O’Donnell K. The Efficacy of Spinal Cord Stimulators in the Reduction of Multiple Sclerosis Spasticity: A Narrative Systematic Review. Brain Neurorehabil. 2023 Jul 19;16(2):e19. doi: https://doi.org/10.12786/bn.2023.16.e19.
  7. ICD-11 for Mortality and Morbidity Statistics. 2024. URL: https://icd.who.int/browse/2024-01/mms/en#1298865187.
  8. Waldman AD, Catania C, Pisa M, et al. Histopathological characterization of staged lesion topography in the multiple sclerosis spinal cord. medRxiv preprint. 2022. doi:https://doi.org/10.1101/2022.06.14.22276413.
  9. Waldman, A.D., Catania, C., Pisa, M. Jenkinson M, Lenardo MJ, DeLuca GC. The prevalence and topography of spinal cord demyelination in multiple sclerosis: a retrospective study. Acta Neuropathol. 2024;147(1):51. Published 2024 Mar 9. doi: https://doi.org/10.1007/s00401-024-02700-6.
  10. Arrambide G, Rovira A, Sastre-Garriga J, et al. Spinal cord lesions: A modest contributor to diagnosis in clinically isolated syndromes but a relevant prognostic factor. Mult Scler. 2018;24(3):301-312. doi: https://doi.org/10.1177/1352458517697830.
  11. Bernitsas E, Bao F, Seraji-Bozorgzad N, et al. Spinal cord atrophy in multiple sclerosis and relationship with disability across clinical phenotypes. Mult Scler Relat Disord. 2015;4(1):47- 51. doi: https://doi.org/10.1016/j.msard.2014.11.002.
  12. Hugos CL, Cameron MH. Assessment and Measurement of Spasticity in MS: State of the Evidence. Curr Neurol Neurosci Rep. 2019 Aug 30;19(10):79. doi: https://doi.org/10.1007/s11910-019-0991-2.
  13. Abdel-Aziz K, Schneider T, Solanky BS, et al. Evidence for early neurodegeneration in the cervical cord of patients with primary progressive multiple sclerosis. Brain. 2015;138(Pt 6):1568-82. doi: https://doi.org/10.1093/brain/awv086.
  14. Capone F, Capone G, Motolese F, et al. Spinal cord dysfunction contributes to balance impairment in multiple sclerosis patients. Clin Neurol Neurosurg. 2019;184:105451. doi: https://doi.org/10.1016/j.clineuro.2019.105451.
  15. Kurtzke J. F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983 Nov;33(11):1444-52. doi: https://doi.org/10.1212/wnl.33.11.1444.
  16. Losseff NA, Webb SL, O’Riordan JI, et al. Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain. 1996;119 (Pt 3):701-8. doi: https://doi.org/10.1093/brain/119.3.701.
  17. Ciccarelli O, Cohen JA, Reingold SC, Weinshenker BG; International Conference on Spinal Cord Involvement and Imaging in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Spinal cord involvement in multiple sclerosis and neuromyelitis optica spectrum disorders. Lancet Neurol. 2019;18(2):185-197. doi: https://doi.org/10.1016/S1474-4422(18)30460-5.
  18. Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162-173. doi: https://doi.org/10.1016/S1474-4422(17)30470-2.
  19. Kreiter D, Spee R, Merry A, Hupperts R, Gerlach O. Effect of disease-modifying treatment on spinal cord lesion formation in multiple sclerosis: A retrospective observational study. Mult. Scler. Relat. Disord. 2023;79:104994. doi: https://doi.org/10.1016/j.msard.2023.104994.
  20. Bussas M, El Husseini M, Harabacz L, et al. Multiple sclerosis lesions and atrophy in the spinal cord: Distribution across vertebral levels and correlation with disability. Neuroimage Clin. 2022;34:103006. doi: https://doi.org/10.1016/j.nicl.2022.103006.
  21. Kreiter D, Postma AA, Hupperts R, Gerlach O. Hallmarks of spinal cord pathology in multiple sclerosis. J Neurol Sci. 2024;456:122846. doi: https://doi.org/10.1016/j.jns.2023.122846.
  22. Kuhle J, Disanto G, Dobson R, et al. Conversion from clinically isolated syndrome to multiple sclerosis: A large multicentre study. Mult Scler. 2015;21(8):1013-1024. doi: https://doi.org/10.1177/135245851456882.
  23. Eden D, Gros C, Badji A, et al. Spatial distribution of multiple sclerosis lesions in the cervical spinal cord. Brain. 2019;142(3):633-646. doi: https://doi.org/10.1093/brain/awy352.
  24. Kantarci OH, Lebrun C, Siva A, et al. Primary progressive multiple sclerosis evolving from radiologically isolated syndrome. Ann. Neurol. 2016;79(2):288-294. doi: https://doi.org/10.1002/ana.24564.
  25. Nasiri E, Sarkesh A, Daei Sorkhabi A, et al. Radiological features of late-onset multiple sclerosis: A systematic review and meta-analysis. J. Neuroradiol. 2023;50(6):571-580. doi: https://doi.org/10.1016/j.neurad.2023.08.002.
  26. Mina Y, Azodi S, Dubuche T, et al. Cervical and thoracic cord atrophy in multiple sclerosis phenotypes: Quantification and correlation with clinical disability. Neuroimage Clin. 2021;30:102680. doi: https://doi.org/10.1016/j.nicl.2021.102680.
  27. Moccia M, Ruggieri S, Ianniello A, Toosy A, Pozzilli C, Ciccarelli O. Advances in spinal cord imaging in multiple sclerosis. Ther Adv Neurol Disord. 2019;12:1756286419840593. Published 2019 Apr 22. doi: https://doi.org/10.1177/1756286419840593.
  28. Etemadifar M, Alaei SA, Sedaghat N, et al. Pure spinal multiple sclerosis: A case series of a possible new entity. J Neuroimmunol. 2025;398:578429. doi: https://doi.org/10.1016/j.jneuroim.2024.578429.
  29. Keegan BM, Kaufmann TJ, Weinshenker BG, et al. Progressive solitary sclerosis: Gradual motor impairment from a single CNS demyelinating lesion. Neurology. 2016;87(16):1713- 1719. doi: https://doi.org/10.1212/WNL.0000000000003235.
  30. Schee JP, Viswanathan S. Pure spinal multiple sclerosis: A possible novel entity within the multiple sclerosis disease spectrum. Mult Scler. 2019;25(8):1189-1195. doi: https://doi.org/10.1177/1352458518775912.
  31. Ouellette R, Treaba CA, Granberg T, et al. 7 T imaging reveals a gradient in spinal cord lesion distribution in multiple sclerosis. Brain. 2020;143(10):2973-2987. doi: https://doi.org/10.1093/brain/awaa249.
  32. Adams CW, Abdulla YH, Torres EM, Poston RN. Periventricular lesions in multiple sclerosis: their perivenous origin and relationship to granular ependymitis. Neuropathol. Appl. Neurobiol. 1987;13(2):141-152. doi: https://doi.org/10.1111/j.1365-2990.1987.
  33. Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M. The blood-spinal cord barrier: morphology and clinical implications. Ann Neurol. 2011;70(2):194-206. doi: https://doi.org/10.1002/ana.22421.
  34. Reali C, Magliozzi R, Roncaroli F, Nicholas R, Howell OW, Reynolds R. B cell rich meningeal inflammation associates with increased spinal cord pathology in multiple sclerosis. Brain Pathol. 2020;30(4):779-793. doi: https://doi.org/10.1111/bpa.12841.
  35. Meningeal T cells associate with diffuse axonal loss in multiple sclerosis spinal cords / G. Androdias, R. Reynolds, M. Chanal et al. Ann. Neurol. 2010. V. 68. No. 4. P. 465–476.
  36. Itoyama Y, Webster HD, Richardson EP Jr, Trapp BD. Schwann cell remyelination of demyelinated axons in spinal cord multiple sclerosis lesions. Ann Neurol. 1983;14(3):339-346. doi: https://doi.org/10.1002/ana.410140313.
  37. Ghezzi L, Bollman B, De Feo L, et al. Schwann Cell Remyelination in the Multiple Sclerosis Central Nervous System. Lab Invest. 2023;103(6):100128. doi: https://doi.org/10.1016/j.labinv.2023.100128.
  38. Trotter JL, Wegescheide CL, Garvey WF. Regional studies of myelin proteins in human brain and spinal cord. Neurochem Res. 1984;9(1):133-146. doi: https://doi.org/10.1007/BF00967665.
  39. Ganesan A, Muralidharan P, Ramya LN. The Fulcrum of Demyelination in Multiple Sclerosis. Curr Protein Pept Sci. 2023;24(7):579-588. doi: https://doi.org/10.2174/1389203724666230717124101.
  40. Dorrier CE, Aran D, Haenelt EA, et al. CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nat Neurosci. 2021;24(2):234-244. doi: https://doi.org/10.1038/s41593-020-00770-9.
  41. Yeung MSY, Djelloul M, Steiner E, et al. Publisher Correction: Dynamics of oligodendrocyte generation in multiple sclerosis. Nature. 2019;566(7744):E9. doi: https://doi.org/10.1038/s41586-019-0935-7.
  42. Oppenheimer DR. The cer vical cord in multiple sclerosis. Neuropathol Appl Neurobiol. 1978;4(2):151-162. doi:
    https://doi.org/10.1111/j.1365-2990.1978.tb00555.x2.
  43. Lassmann H. Multiple sclerosis pathology. Cold Spring Harb Perspect Med. 2018;8(3):a028936. Published 2018 Mar 1. doi: https://doi.org/10.1101/cshperspect.a028936.
  44. Biberacher V, Boucard CC, Schmidt P, et al. Atrophy and structural variability of the upper cervical cord in early multiple sclerosis. Mult Scler. 2015;21(7):875-884. doi: https://doi.org/10.1177/1352458514546514.
  45. Kerbrat A, Edan G. Should spinal cord MRI be systematically performed for diagnosis and follow up of multiple sclerosis? Yes. Rev. Neurol. (Paris). 2020;176(6):487-489. doi: https://doi.org/10.1016/j.neurol.2020.03.006.
  46. Brownlee WJ, Altmann DR, Prados F, et al. Early imaging predictors of long-term outcomes in relapse-onset multiple sclerosis. Brain. 2019;142(8):2276-2287. doi: https://doi.org/10.1093/brain/awz156.
  47. Brownlee WJ, Altmann DR, Alves Da Mota P, et al. Association of asymptomatic spinal cord lesions and atrophy with disability 5 years after a clinically isolated syndrome. Mult Scler. 2017;23(5):665-674. doi: https://doi.org/10.1177/1352458516663034.
  48. Bischof A, Papinutto N, Keshavan A, et al. Spinal Cord Atrophy Predicts Progressive Disease in Relapsing Multiple Sclerosis. Ann Neurol. 2022;91(2):268-281. doi: https://doi.org/10.1002/ana.26281.
  49. Ruggieri S, Petracca M, De Giglio L, et al. A matter of atrophy: differential impact of brain and spine damage on disability worsening in multiple sclerosis. J Neurol. 2021;268(12):4698-4706. doi: https://doi.org/10.1007/s00415-021-10576-9.
  50. Leguy S, Combès B, Bannier E, Kerbrat A. Prognostic value of spinal cord MRI in multiple sclerosis patients. Rev Neurol (Paris). 2021;177(5):571-581. doi: https://doi.org/10.1016/j.neurol.2020.08.002.
  51. Wattjes MP, Ciccarelli O, Reich DS, et al. 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol. 2021;20(8):653-670. doi: https://doi.org/10.1016/S1474-4422(21)00095-8.
  52. Combes AJE, Clarke MA, O’Grady KP, Schilling KG, Smith SA. Advanced spinal cord MRI in multiple sclerosis: Current techniques and future directions. Neuroimage Clin. 2022;36:103244. doi: https://doi.org/10.1016/j.nicl.2022.103244.