ГоловнаArchive of numbers2018Volume 26, issue 3 (96)Pharmacogenetic testing as a basis for the selection of antiepilep tic drugs in the treatment of pharmacoresistant epilepsy in children
Title of the article | Pharmacogenetic testing as a basis for the selection of antiepilep tic drugs in the treatment of pharmacoresistant epilepsy in children | ||||
Authors |
Tantsura Lyudmyla Koliada Oleksandr Pylypets Olena Tantsura Yevgen Tretiakov Dmytro |
||||
In the section | PROBLEMATIC ARTICLES | ||||
Year | 2018 | Issue | Volume 26, issue 3 (96) | Pages | 5-9 |
Type of article | Scientific article | Index UDK | 616.853-056.7: 615.213-08: 575.113.2 | Index BBK | - |
Abstract | We analyzed the results of an examination of 68 patients (children and adolescents), 42 (62.69 %) boys and 26 (37.31 %) girls, aged 5 months to 18 years, the average age was 9.6 ± 5.65 years. Children suffer from severe, refractory to the treatment forms of epilepsy. Duration of the disease from 1 month to 16 years. All children were given genetic research using the allelic method CYP2C9*1,*2,*3 of a specifi c polymerase chain reaction. In the study group dominated homozygous carriers by the allele CYP2C9*1 — 76.47 %. This genotype is quite common in many populations and is typical for fast meta bolism. The carrier of CYP2C9*2 and CYP2C9*3 alleles, which is functionally linked with biotransformation of drugs, slowing down their metabolism and occurrence of side effects, was found in 22.53 % of patients. | ||||
Key words | epilepsy, pharmacoresistance, pharmacogenetic testing, cytochrome P450 isoenzymes, treatment, children | ||||
Access to full text version of the article pdf | download | ||||
Bibliography | 1. Генети чес кий паспорт — основа индивидуальной и пре- диктивной медицины / под ред. В. С. Баранова. СПб.: Изд-во Н-Л, 2009. 528 с. 2. Герасимова К. В., Сычев Д. А. Клини чес кая фармакогене- тика: истори чес кий очерк // Медицинские технологии. Оценка и выбор. 2012. № 3. С. 87—94. 3. Anderson G. D. Pharmacokinetic, pharmacodynamic, and pharmacogenetic targeted therapy of antiepileptic drugs // Ther. Drug Monit. 2008. 30; 173—180. 4. Середенин С. Б. Лекции по фармакогенетике. М.: Медицин- ское информационное агентство, 2004. 303 с. 5. Luscher W., Klotz U., Zimprich E., Schmidt D. The clinical impact of pharmacogenetics on the treatment of epilepsy // Epilepsia. 2009 Jan; 50 (1): 1—23. 6. Кукес В. Г., Грачёв С. В., Сычёв Д. А., Раменская Г. В. Мета- бо лизм лекарственных средств // Научные основы персонали- зированной медицины : руководство для врачей. М.: ГЭОТАР- Медиа, 2008. 304 с. 7. Glauser T. A. Biomarkers for antiepileptic drug response // Biomark Med. 2011 Oct; 5 (5): 635—41. 8. Franco V., Perucca E. CYP2C9 polymorphisms and phenytoin metabolism: implications for adverse effects // Expert Opin Drug Metab Toxicol. 2015; 11 (8): 1269—79. 9. Depondt C. Epilepsy pharmacogenetics: science or fi ction? // Med Sci (Paris). 2013; 29 (2): 189—93. doi: 10.1051/medsci/2013292017. 10. Glauser T. A. Biomarkers for antiepileptic drug response // Biomark Med. 2011 Oct; 5 (5): 635—41. 11. Pharmacogenetics and antiepileptic drug metabolism: implication of genetic variants in cytochromes P450 / Saldaña- Cruz A. M., Sánchez-Corona J., Márquez de Santiago D. A. [et al.] // Rev Neurol. 2013 May 1; 56 (9): 471—9. 12. Genetic polymorphism analysis of the drug-metabolizing enzyme CYP2C9 in a Chinese Tibetan population / Jin T., Geng T., He N. [et al.] // Gene. 2015; 567: 196—200. 13. Genetic polymorphisms of VKORC1, CYP2C9, CYP4F2 in Bai, Tibetan Chinese / W. T. Zeng, Q. S. Zheng, M. Huang [et al.] // Pharmazie. 2012; 67: 69—73. 14. CYP2C9 polymorphism analysis in Han Chinese populations: building the largest allele frequency database / D-P. Dai, R-A. Xu, L-M. Hu [et al.] // Pharmacogenomics J. 2014; 14: 85—92. 15. Allele and genotype frequencies of CYP2C9 in a Korean population / Bae J.-W., Kim H.-K., Kim J.-H. [et al.] // Br J Clin Pharmacol. 2005; 60: 418—422. doi: 10.1111/j.1365-2125.2005.02448.x. 16. Frequency of cytochrome P450 2C9 mutant alleles in a Korean population / Yoon Y. R., Shon J. H., Kim M. K. [et al.] // Br J Clin Pharmacol. 2001; 51: 277—280. 17. Nasu K., Kubota T., Ishizaki T. Genetic analysis of CYP2C9 polymorphism in a Japanese population // Pharmacogenetics. 1997; 7: 405—409. 18. Zuo J., Xia D., Jia L., Guo T. Genetic polymorphisms of drugmetabolizing phase I enzymes CYP3A4, CYP2C9, CYP2C19 and CYP2D6 in Han, Uighur, Hui and Mongolian Chinese populations // Pharmazie. 2012; 67: 639—644. 19. Genetic polymorphisms of cytochrome P450 enzymes 2C9 and 2C19 in a healthy Mongolian population in China / Yang Z. F., Cui H. W., Hasi T. [et al.] // Genet Mol Res. 2010; 9: 1844—1851. 20. Genetic polymorphism of CYP2C9 in a Vietnamese Kinh population / Lee S. S., Kim K. M., Thi-Le H. [et al.] // Ther Drug Monit. 2005; 27: 208—210. 21. CYP2C9 polymorphism: prevalence in healthy and warfarintreated Malay and Chinese in Malaysia / Ngow H. A., Wan Khairina W. M., Teh L. K. [et al.] // Singapore Med J. 2009; 50: 490—493. 22. Allele and genotype frequency of CYP2C9 in Tamilnadu population / Adithan C., Gerard N., Vasu S. [et al.] // Eur J Clin Pharmacol. 2003; 59: 707—709. 23. Alzahrani A. M., Ragia G., Hanieh H., Manolopoulos V. G. Genotyping of CYP2C9 and VKORC1 in the Arabic population of Al- Ahsa, Saudi Arabia // BioMed Res Int. 2013; Vol. 2013, Article ID 315980, 6 p. URL : http: //dx.doi.org/10.1155/2013/315980 24. Mirghani R. A., Chowdhary G., Elghazali G. Distribution of the major cytochrome P450 (CYP) 2C9 genetic variants in a Saudi population // Basic Clin Pharmacol Toxicol. 2011; 109: 111—114. 25. Allele and genotype frequencies of polymorphic cytochromes P450 (CYP2C9, CYP2C19, CYP2E1) and dihydropyrimidine dehydrogenase (DPYD) in the Egyptian population / Hamdy S. I.,Hiratsuka M., Narahara K. [et al.] // Br J Clin Pharmacol. 2002; 53: 596—603. 26. Allele and genotype frequencies of the polymorphic cytochrome P450 genes (CYP1A1, CYP3A4, CYP3A5, CYP2C9 and CYP2C19) in the Jordanian population / Yousef A. M., Bulatova N. R., Newman W. [et al.] // Mol Biol Rep. 2012; 39: 9423—9433. 27. Pharmacogenetics of coumarin dosing: prevalence of CYP2C9 and VKORC1 polymorphisms in the Lebanese population / Djaffar- Jureidini I., Chamseddine N., Keleshian S. [et al.] // Genet Test Mol Biomarkers. 2011; 15: 827—830. 28. Frequency of CYP2C9 genotypes among Omani patients receiving warfarin and its correlation with warfarin dose / Tanira M. O., Al-Mukhaini M. K., Al-Hinai A. T. [et al.] // Community Genet. 2007; 10: 32—37. 29. Genetic polymorphism of cytochrome P450 2C9 in a Caucasian and a black African population / Scordo M. G., Aklillu E., Yasar U. [et al.] // Br J Clin Pharmacol. 2001; 52: 447—450. 30. Combined CYP2C9, VKORC1 and CYP4F2 frequencies among racial and ethnic groups / Scott S. A., Khasawneh R., Peter I. [et al.] // Pharmacogenomics. 2010; 11: 781—791. 31. Influence of CYP2C9 Genotype on warfarin dose among African American and European Americans / Limdi N., Goldstein J., Blaisdell J. [et al.] // Per Med. 2007; 4: 157—169. 32. Kudzi W., Dodoo A. N., Mills J. J. Characterisation of CYP2C8, CYP2C9 and CYP2C19 polymorphisms in a Ghanaian population. BMC Med Genet. 2009; 10: 124. 33. Zand N., Tajik N., Moghaddam A. S., Milanian I. Genetic polymorphisms of cytochrome P450 enzymes 2C9 and 2C19 in a healthy Iranian population // Clin Exp Pharmacol Physiol. 2007; 34: 102—105. 34. Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin / Aynacioglu A. S., Brockmoller J., Bauer S. [et al.] // Br J Clin Pharmacol. 1999; 48: 409—415. 35. CYP2C9 genotypes and the quality of anticoagulation control with warfarin therapy among Brazilian patients / Lima M. V., Ribeiro G. S., Mesquita E. T. [et al.] // Eur J Clin Pharmacol. 2008; 64: 9—15. 36. Lower frequency of CYP2C9*2 in Mexican-Americans compared to Spaniards / LLerena A., Dorado P., O’Kirwan F. [et al.] // Pharmacogenomics J. 2004; 4: 403—406. = Lower frequency of CYP2C9*2 in Mexican-Americans compared to Spaniards. 37. Losartan hydroxylation phenotype in an Ecuadorian population: influence of CYP2C9 genetic polymorphism, habits and gender / Dorado P., Beltrán L. J., Machín E. [et al.] // Pharmacogenomics. 2012; 13: 1711—1717. 38. Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population / Yasar U., Eliasson E., Dahl M. L. [et al.] // Biochem Biophys Res Commun. 1999; 254: 628—631. 39. Microarray-based detection of CYP1A1, CYP2C9, CYP2C19, CYP2D6, GSTT1, GSTM1, MTHFR, MTRR, NQO1, NAT2, HLA-DQA1, and AB0 allele frequencies in native Russians / Gra O., Mityaeva O., Berdichevets I. [et al.] // Genet Test Mol Biomarkers. 2010; 14: 329—342. 40. Genetic analysis of the human cytochrome P450 CYP2C9 locus / Stubbins M. J., Harries L. W., Smith G. [et al.] // Pharmacogenetics. 1996; 6: 429—439. 41. Pharmacogenetically relevant polymorphisms in Portugal / Oliveira E., Marsh S., van Booven D. J. [et al.] // Pharmacogenomics. 2007; 8: 703—712. 42. Prevalence of CYP2C9 polymorphisms in the south of Europe / Sanchez-Diz P., Estany-Gestal A., Aguirre C. [et al.] // Pharmaco geno mics J. 2009; 9: 306—310. 43. Frequency of cytochrome P450 2C9 allelic variants in the Chinese and French populations / Yang J. Q., Morin S., Verstuyft C. [et al.] // Fundam Clin Pharmacol. 2003; 17: 373—376. 44. Genetic polymorphism of CYP2C9 and CYP2C19 in a Bolivian population: an investigative and comparative study / Bravo- Villalta H. V., Yamamoto K., Nakamura K. [et al.] // Eur J Clin Pharmacol. 2005; 61: 179—184. 45. Interethnic differences in the relevance of CYP2C9 genotype and environmental factors for diclofenac metabolism in Hispanics from Cuba and Spain / Llerena A., Alvarez M., Dorado P. [et al.] // Pharmaco genomics J. 2014; 14: 229—234. 46. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism / Sullivan-Klose T. H., Ghanayem B. I., Bell D. A. [et al.] // Pharmacogenetics. 1996; 6: 341—349. 47. Genetic polymorphisms of cytochromes P450: CYP2C9, CYP2C19, and CYP2D6 in Croatian population / Bozina N., Granic P., Lalic Z. [et al.] // Croat Med J. 2003; 44: 425—428. 48. Burian M., Grosch S., Tegeder I., Geisslinger G. Validation of a new fluorogenic real-time PCR assay for detection of CYP2C9 allelic variants and CYP2C9 allelic distribution in a German population // Br J Clin Pharmacol. 2002; 54: 518—521. 49. Genetic polymorphisms of drug-metabolizing enzymes CYP2D6, CYP2C9, CYP2C19 and CYP3A5 in the Greek population / Arvanitidis K., Ragia G., Iordanidou M. [et al.] // Fundam Clin Pharmacol. 2007; 21: 419—426. 50. Антоненко П. Б., Кресюн В. И. Поліморфізм генотипу цито хрому Р450 2С9 в Одеському регіоні // Актуальні проблеми сучасної медицини. 2011. № 11(4). С. 51—55. 51. Левкович Н. М., Горовенко Н. Г. Частота розповсюдження алельних варіантів *2 та *3 гена СУР2С9 у населення України // Одеський медичний журнал. 2013. № 2 (136). С. 23—28. 52. Гузева О. В. Оптимизация диагностики и обоснование персонифицированной терапии эпилепсии у детей : автореф. дис. на соискание уч. степени д-ра мед. наук : спец. 14.01.11 «Нервные болезни». СПб., 2014, С. 34. 53. The Effect of Polymorphisms of Cytochrom P450 CYP2C9, CYP2C19 and CYP2D6 on Drug-Resistant Epilepsy in Turkish Children / Seven M., Batar B., Unal S. [et al.] // Molecular Diagnosis&Therapy. 2014; Vol. 18: 229—236. 54. Frequencies of CYP2C9 polymorphisms in Nord Indian population and their association with drug levels in children on phenytoin monotherapy / Сhaudhary N., Kabra M., Gulati S. [et al.] // BMC Pediatr. 2016. |