ГоловнаArchive of numbers2023Volume 31, issue 2 (115)Fractal analysis of magnetic resonance brain images: diagnostic value (literature review)
Title of the article Fractal analysis of magnetic resonance brain images: diagnostic value (literature review)
Authors Maryenko Nataliia
In the section LITERATURE REVIEW
Year 2023 Issue Volume 31, issue 2 (115) Pages 93-97
Type of article Scientific article Index UDK 611.813:57.086:517:530.191 Index BBK -
Abstract

 Fractal analysis is a relatively new mathematical method for image analysis, which quantita- tively characterizes the spatial configuration complexity degree of the studied objects. In clinical neuroscience, fractal analysis is most often used for morphometric studies of cerebral hemispheres and cerebellum. An analysis of the cortex, white matter, and their outer surfaces, as well as analy- sis of brain tissue as a whole can be carried out. The fractal dimension (parameter determined by fractal analysis) depends on individual anatomical features and may change during ontogen- esis. Changes in the fractal dimension were determined during the process of brain development and in its deviations, in normal aging and neurodegenerative diseases, acute brain tissue lesions (traumatic brain injury and cerebral circulation disorders) and in some mental disorders. The ad- vantages of fractal analysis application in clinical practice include the possibility of detecting the morphological changes in the brain structures as well as the possibility of the quantitative and objective assessment of the severity of the detected changes.
Key words fractal analysis, fractal dimension, brain, magnetic resonance imaging, neuroimaging
Access to full text version of the article pdf
Bibliography
1. Weiskopf N, Mohammadi S, Lutti A, Callaghan MF. Advances in MRI-based computational neuroanatomy: from morpho metry to in-vivo histology. Curr Opin Neurol. 2015;28(4):313-322. doi:10.1097/WCO.0000000000000222.
2. Mandelbrot BB. The fractal geometry of nature. San Fran- cisco: W.H. Freeman and Company;1982. 3. Di Ieva A, Grizzi F, Jelinek H, Pellionisz AJ, Losa GA. Fractals in the Neurosciences, Part I: General Principles and Basic Neurosciences. Neuroscientist. 2014 Aug;20(4):403-417. doi: 10.1177/1073858413513927.
4. Di Ieva A, Esteban FJ, Grizzi F, Klonowski W, Martín- Landrove M. Fractals in the neurosciences, Part II: clinical applications and future perspectives. Neuroscientist. 2015 Feb;21(1):30-43. doi: 10.1177/1073858413513928.
 5. Feder J. Fractals. New York: Plenum Press; 1988.
6. King RD, George AT, Jeon T, Hynan LS, Youn TS, Kennedy DN, Dickerson B; the Alzheimer’s Disease Neuroimaging Initiative. Characterization of Atrophic Changes in the Cerebral Cortex Using Fractal Dimensional Analysis. Brain Imaging Behav. 2009 Jun; 3(2):154-166. doi: 10.1007/s11682-008-9057-9. PMID: 20740072; PMCID: PMC2927230.
7. King RD, Brown B, Hwang M, Jeon T, George AT; Alzheimer's Disease Neuroimaging Initiative. Fractal dimen- sion analysis of the cortical ribbon in mild Alzheimer's disease. Neuroimage. 2010 Nov 1;53(2):471-9. doi: 10.1016/j.neuroim- age.2010.06.050. Epub 2010 Jun 25. PMID: 20600974; PMCID: PMC2942777.
8. Chen JH, Huang NX, Zou TX, Chen HJ. Brain Cortical Complexity Alteration in Amyotrophic Lateral Sclerosis: A Preliminary Fractal Dimensionality Study. Biomed Res Int. 2020 Mar 19; 2020: 1521679. doi: 10.1155/2020/1521679. PMID: 32280675; PMCID: PMC7115147.
9. Kalmanti E, Maris TG. Fractal dimension as an index of brain cortical changes throughout life. In Vivo. 2007 Jul-Aug; 21(4):641-646. PMID: 17708359.
10. Im K, Lee JM, Yoon U, Shin YW, Hong SB, Kim IY, Kwon JS, Kim SI. Fractal dimension in human cortical surface: multiple regression analysis with cortical thickness, sulcal depth, and folding area. Hum Brain Mapp. 2006 Dec; 27(12):994-1003. doi: 10.1002/hbm.20238.
11. Madan CR, Kensinger EA. Cortical complexity as a mea- sure of age-related brain atrophy. Neuroimage. 2016 Jul 1;134:617- 629. doi: 10.1016/j.neuroimage.2016.04.029.
12. Nenadic I, Yotter RA, Sauer H, Gaser C. Cortical surface complexity in frontal and temporal areas varies across subgroups of schizophrenia. Hum Brain Mapp. 2014; 35(4):1691-1699. doi:10.1002/hbm.22283.
13. Zhuo C, Li G, Chen C, Ji F, Lin X, Jiang D, Tian H, Wang L, Lin X, Ping J. Left cerebral cortex complexity differences in spo- radic healthy individuals with auditory verbal hallucinations: A pilot study. Psychiatry Res. 2020 Jan 30;285:112834. doi: 10.1016/j.psychres.2020.112834.
14. Nenadic I, Yotter RA, Dietzek M, Langbein K, Sauer H, Gaser C. Cortical complexity in bipolar disorder applying a spherical harmonics approach. Psychiatry Res Neuroimaging. 2017;263:44-47. doi:10.1016/j.pscychresns.2017.02.007.
15. Cascino G, Canna A, Monteleone AM, et al. Cortical thickness, local gyrification index and fractal dimensionality in people with acute and recovered Anorexia Nervosa and in people with Bulimia Nervosa. Psychiatry Res Neuroimaging. 2020;299:111069. doi:10.1016/j.pscychresns.2020.111069.
16. Chen Y, Luo J, Chen S, et al. Altered cortical gyrification, sulcal depth, and fractal dimension in the autism spectrum disorder comorbid attention-deficit/hyperactivity disorder than the autism spectrum disorder. Neuroreport. 2023;34(2):93-101. doi:10.1097/WNR.0000000000001864.
17. Roura E, Maclair G, Andorrà M, Juanals F, Pulido- Valdeolivas I, Saiz A, Blanco Y, Sepulveda M, Llufriu S, Martínez- Heras E, Solana E, Martinez-Lapiscina EH, Villoslada P. Cortical fractal dimension predicts disability worsening in Multiple Sclerosis patients. Neuroimage Clin. 2021;30:102653. doi: 10.1016/j.nicl.2021.102653.
18. Farahibozorg S, Hashemi-Golpayegani SM, Ashburner J. Age- and sex-related variations in the brain white matter fractal dimension throughout adulthood: an MRI study. Clin Neuroradiol. 2015 Mar;25(1):19-32. doi: 10.1007/s00062-013-0273-3.
19. Zhang L, Dean D, Liu JZ, Sahgal V, Wang X, Yue GH. Quantifying degeneration of white matter in normal aging using fractal dimension. Neurobiol Aging. 2007 Oct;28(10):1543-55. doi: 10.1016/j.neurobiolaging.2006.06.020. Epub 2006 Jul 24. PMID: 16860905.
20. Rajagopalan V, Das A, Zhang L, Hillary F, Wylie GR, Yue GH. Fractal dimension brain morphometry: a novel ap- proach to quantify white matter in traumatic brain injury. Brain Imaging Behav. 2019 Aug;13(4):914-924. doi: 10.1007/ s11682-018-9892-2.
21. Maryenko NI, Stepanenko OY. Comparative analysis of fractal dimensions of human cerebellum: impact of ima- ge preprocessing and fractal analysis methods. Wiad Lek. 2022;75(2):438-443. doi: 10.36740/WLek202202120.
22. Liu JZ, Zhang LD, Yue GH. Fractal dimension in human cerebellum measured by magnetic resonance imaging. Biophys J. 2003;85(6):4041-4046. doi:10.1016/S0006-3495(03)74817-6.
23. Akar E, Kara S, Akdemir H, Kırış A. Fractal dimension analysis of cerebellum in Chiari Malformation type I. Comput Biol Med. 2015;64:179-186. doi:10.1016/j.compbiomed.2015.06.024. 24. Wu YT, Shyu KK, Jao CW, et al. Fractal dimension analysis for quantifying cerebellar morphological change of multiple system atrophy of the cerebellar type (MSA-C). Neuroimage. 2010;49(1):539-551. doi:10.1016/j.neuroimage.2009.07.042.
25. Maryenko N., Stepanenko O. Fractal dimension of cere- bellum in acute cerebellar infarction (magnetic resonance imaging study). Aktualności Neurologiczne (Current Neurology). 2022;22(1):3-10. doi: 10.15557/AN.2022.0001.
26. Takao H, Hayashi N, Ohtomo K. Brain morphology is indi- vidual-specific information. Magn Reson Imaging. 2015;33(6):816- 821. doi:10.1016/j.mri.2015.03.010.
27. De Luca A, Arrigoni F, Romaniello R, Triulzi FM, Peruzzo D, Bertoldo A. Automatic localization of cerebral cortical malfor- mations using fractal analysis. Phys Med Biol. 2016;61(16):6025- 6040. doi:10.1088/0031-9155/61/16/6025.