ГоловнаArchive of numbers2023Volume 31, issue 2 (115)Fractal analysis of magnetic resonance brain images: diagnostic value (literature review)
Title of the article | Fractal analysis of magnetic resonance brain images: diagnostic value (literature review) | ||||
Authors |
Maryenko Nataliia |
||||
In the section | LITERATURE REVIEW | ||||
Year | 2023 | Issue | Volume 31, issue 2 (115) | Pages | 93-97 |
Type of article | Scientific article | Index UDK | 611.813:57.086:517:530.191 | Index BBK | - |
Abstract | Fractal analysis is a relatively new mathematical method for image analysis, which quantita-
tively characterizes the spatial configuration complexity degree of the studied objects. In clinical
neuroscience, fractal analysis is most often used for morphometric studies of cerebral hemispheres
and cerebellum. An analysis of the cortex, white matter, and their outer surfaces, as well as analy-
sis of brain tissue as a whole can be carried out. The fractal dimension (parameter determined
by fractal analysis) depends on individual anatomical features and may change during ontogen-
esis. Changes in the fractal dimension were determined during the process of brain development
and in its deviations, in normal aging and neurodegenerative diseases, acute brain tissue lesions
(traumatic brain injury and cerebral circulation disorders) and in some mental disorders. The ad-
vantages of fractal analysis application in clinical practice include the possibility of detecting
the morphological changes in the brain structures as well as the possibility of the quantitative
and objective assessment of the severity of the detected changes. |
||||
Key words | fractal analysis, fractal dimension, brain, magnetic resonance imaging, neuroimaging | ||||
Access to full text version of the article pdf | |||||
Bibliography | 1. Weiskopf N, Mohammadi S, Lutti A, Callaghan MF. Advances
in MRI-based computational neuroanatomy: from morpho metry
to in-vivo histology. Curr Opin Neurol. 2015;28(4):313-322.
doi:10.1097/WCO.0000000000000222. 2. Mandelbrot BB. The fractal geometry of nature. San Fran-
cisco: W.H. Freeman and Company;1982.
3. Di Ieva A, Grizzi F, Jelinek H, Pellionisz AJ, Losa GA.
Fractals in the Neurosciences, Part I: General Principles and
Basic Neurosciences. Neuroscientist. 2014 Aug;20(4):403-417.
doi: 10.1177/1073858413513927. 4. Di Ieva A, Esteban FJ, Grizzi F, Klonowski W, Martín-
Landrove M. Fractals in the neurosciences, Part II: clinical
applications and future perspectives. Neuroscientist. 2015
Feb;21(1):30-43. doi: 10.1177/1073858413513928. 5. Feder J. Fractals. New York: Plenum Press; 1988. 6. King RD, George AT, Jeon T, Hynan LS, Youn TS, Kennedy DN,
Dickerson B; the Alzheimer’s Disease Neuroimaging Initiative.
Characterization of Atrophic Changes in the Cerebral Cortex
Using Fractal Dimensional Analysis. Brain Imaging Behav. 2009
Jun; 3(2):154-166. doi: 10.1007/s11682-008-9057-9. PMID:
20740072; PMCID: PMC2927230. 7. King RD, Brown B, Hwang M, Jeon T, George AT;
Alzheimer's Disease Neuroimaging Initiative. Fractal dimen-
sion analysis of the cortical ribbon in mild Alzheimer's disease.
Neuroimage. 2010 Nov 1;53(2):471-9. doi: 10.1016/j.neuroim-
age.2010.06.050. Epub 2010 Jun 25. PMID: 20600974; PMCID:
PMC2942777. 8. Chen JH, Huang NX, Zou TX, Chen HJ. Brain Cortical
Complexity Alteration in Amyotrophic Lateral Sclerosis: A
Preliminary Fractal Dimensionality Study. Biomed Res Int. 2020
Mar 19; 2020: 1521679. doi: 10.1155/2020/1521679. PMID:
32280675; PMCID: PMC7115147. 9. Kalmanti E, Maris TG. Fractal dimension as an index
of brain cortical changes throughout life. In Vivo. 2007 Jul-Aug;
21(4):641-646. PMID: 17708359. 10. Im K, Lee JM, Yoon U, Shin YW, Hong SB, Kim IY, Kwon JS,
Kim SI. Fractal dimension in human cortical surface: multiple
regression analysis with cortical thickness, sulcal depth, and
folding area. Hum Brain Mapp. 2006 Dec; 27(12):994-1003. doi:
10.1002/hbm.20238. 11. Madan CR, Kensinger EA. Cortical complexity as a mea-
sure of age-related brain atrophy. Neuroimage. 2016 Jul 1;134:617-
629. doi: 10.1016/j.neuroimage.2016.04.029. 12. Nenadic I, Yotter RA, Sauer H, Gaser C. Cortical surface
complexity in frontal and temporal areas varies across subgroups
of schizophrenia. Hum Brain Mapp. 2014; 35(4):1691-1699.
doi:10.1002/hbm.22283. 13. Zhuo C, Li G, Chen C, Ji F, Lin X, Jiang D, Tian H, Wang L,
Lin X, Ping J. Left cerebral cortex complexity differences in spo-
radic healthy individuals with auditory verbal hallucinations: A pilot study. Psychiatry Res. 2020 Jan 30;285:112834. doi:
10.1016/j.psychres.2020.112834. 14. Nenadic I, Yotter RA, Dietzek M, Langbein K, Sauer H,
Gaser C. Cortical complexity in bipolar disorder applying
a spherical harmonics approach. Psychiatry Res Neuroimaging.
2017;263:44-47. doi:10.1016/j.pscychresns.2017.02.007. 15. Cascino G, Canna A, Monteleone AM, et al. Cortical
thickness, local gyrification index and fractal dimensionality
in people with acute and recovered Anorexia Nervosa and
in people with Bulimia Nervosa. Psychiatry Res Neuroimaging.
2020;299:111069. doi:10.1016/j.pscychresns.2020.111069. 16. Chen Y, Luo J, Chen S, et al. Altered cortical gyrification,
sulcal depth, and fractal dimension in the autism spectrum
disorder comorbid attention-deficit/hyperactivity disorder than
the autism spectrum disorder. Neuroreport. 2023;34(2):93-101.
doi:10.1097/WNR.0000000000001864. 17. Roura E, Maclair G, Andorrà M, Juanals F, Pulido-
Valdeolivas I, Saiz A, Blanco Y, Sepulveda M, Llufriu S, Martínez-
Heras E, Solana E, Martinez-Lapiscina EH, Villoslada P. Cortical
fractal dimension predicts disability worsening in Multiple
Sclerosis patients. Neuroimage Clin. 2021;30:102653. doi:
10.1016/j.nicl.2021.102653. 18. Farahibozorg S, Hashemi-Golpayegani SM, Ashburner J.
Age- and sex-related variations in the brain white matter fractal
dimension throughout adulthood: an MRI study. Clin Neuroradiol.
2015 Mar;25(1):19-32. doi: 10.1007/s00062-013-0273-3. 19. Zhang L, Dean D, Liu JZ, Sahgal V, Wang X, Yue GH.
Quantifying degeneration of white matter in normal aging using
fractal dimension. Neurobiol Aging. 2007 Oct;28(10):1543-55.
doi: 10.1016/j.neurobiolaging.2006.06.020. Epub 2006 Jul 24.
PMID: 16860905. 20. Rajagopalan V, Das A, Zhang L, Hillary F, Wylie GR,
Yue GH. Fractal dimension brain morphometry: a novel ap-
proach to quantify white matter in traumatic brain injury.
Brain Imaging Behav. 2019 Aug;13(4):914-924. doi: 10.1007/
s11682-018-9892-2. 21. Maryenko NI, Stepanenko OY. Comparative analysis
of fractal dimensions of human cerebellum: impact of ima-
ge preprocessing and fractal analysis methods. Wiad Lek.
2022;75(2):438-443. doi: 10.36740/WLek202202120. 22. Liu JZ, Zhang LD, Yue GH. Fractal dimension in human
cerebellum measured by magnetic resonance imaging. Biophys J.
2003;85(6):4041-4046. doi:10.1016/S0006-3495(03)74817-6. 23. Akar E, Kara S, Akdemir H, Kırış A. Fractal dimension
analysis of cerebellum in Chiari Malformation type I. Comput Biol
Med. 2015;64:179-186. doi:10.1016/j.compbiomed.2015.06.024.
24. Wu YT, Shyu KK, Jao CW, et al. Fractal dimension analysis
for quantifying cerebellar morphological change of multiple
system atrophy of the cerebellar type (MSA-C). Neuroimage.
2010;49(1):539-551. doi:10.1016/j.neuroimage.2009.07.042. 25. Maryenko N., Stepanenko O. Fractal dimension of cere-
bellum in acute cerebellar infarction (magnetic resonance
imaging study). Aktualności Neurologiczne (Current Neurology).
2022;22(1):3-10. doi: 10.15557/AN.2022.0001. 26. Takao H, Hayashi N, Ohtomo K. Brain morphology is indi-
vidual-specific information. Magn Reson Imaging. 2015;33(6):816-
821. doi:10.1016/j.mri.2015.03.010. 27. De Luca A, Arrigoni F, Romaniello R, Triulzi FM, Peruzzo
D, Bertoldo A. Automatic localization of cerebral cortical malfor-
mations using fractal analysis. Phys Med Biol. 2016;61(16):6025-
6040. doi:10.1088/0031-9155/61/16/6025. |