ГоловнаArchive of numbers2022Volume 30, issue 2(111)The effectiveness of rehabilitation programs for the mobilization of compensatory-adaptive neuroplasticity processes in patients with Parkinson’s disease according to indicators of neurotrophic factors
Title of the article The effectiveness of rehabilitation programs for the mobilization of compensatory-adaptive neuroplasticity processes in patients with Parkinson’s disease according to indicators of neurotrophic factors
Authors Bogdanova Iryna
Sokolik Victoria
Voloshyna Natalia
Fedosieiev Serhii
Voloshyn-Gaponov Ivan
Tereshchenko Liudmyla
Bogdanova Taisia
In the section MECHANISMS OF FORMATION AND MODERN PRINCIPLES OF TREATMENT OF NEUROLOGICAL DISORDERS
Year 2022 Issue Volume 30, issue 2(111) Pages 18-23
Type of article Scientific article Index UDK 612:82:616.831-001-858-008.6 Index BBK -
Abstract DOI : https://doi.org/10.36927/2079-0325-V30-is2-2022-2

 The purpose of the study: is to objec- tively evaluate the effectiveness of non- drug rehabilitation programs for patients with Parkinson’s disease (PD) based on in- dicators of specific neurotrophic factors. Sixty-one patients with PD: study group — 33 patients, comparison group — 28 people. There were 33 patients in the ex- perimental group and 28 in the compari- son group. The patients of the experi- mental group did daily physical exercises for two months, unlike the representatives of the comparison group. Patients of both groups were examined for the serum level of the neurotrophic fac- tors: glial cell line-derived neurotrophic factor (GDNF) and cerebral dopamine neurotrophic factor (CDNF) In patients with PD of the comparison group, the synchronous dynamics of CDNF and GDNF indicators occurred and char- acterized the individual course of the dis- ease. On the other hand, in the experimental group, asynchrony of changes of these neuro- trophic factors in blood serum was observed under conditions of physical exertion. Summarizing the data obtained, it is nec- essary to consider many factors that can af- fect the level of neurotrophic factors. There is probably a genetically determined hetero- geneity of the Parkinson’s disease pheno- type, which is also expressed by the features of the synchronous dynamics of CDNF and GDNF parameters. It follows that the initial assessment of these parameters in patients with PD is optimal to identify those for whom motor rehabilitation will cause a long and stable positive effect and ensure the course of the disease according to a favourable type. The multidirectional and asynchrony of changes in neurotrophic factors in blood serum under conditions of physical exer- tion indicates the "sensitivity" of the sys- tem of neurotrophic factors to rehabilitation measures, even if they are used for a short time. Since long-term rehabilitation programs provide positive dynamics in the design of neurotrophic factors, a sufficient dura- tion and regularity of non-drug rehabilitation programs are advisable.
Key words Parkinson’s disease, paradoxical kinesia, non-drug rehabilitation, neurotrophic factors
Access to full text version of the article pdf download
Bibliography 1. Karaban I. M., Karasevych N. V. Ahonisty dofaminovykh retseptoriv u kompleksnii patohenetichnii terapii khvoroby Par- kinsona. Mizhnarodnyi nevrolohichnyi zhurnal. 2017. No. 5. S. 52– 58. http://dx.doi.org/10.22141/2224-0713.5.91.2017.110857.
2. Slobodin T. N. Sovremenny'e predstavleniya o patogeneze bolezni Parkinsona / T. N. Slobodin // NejroNEWS. 2011. No. 7(34). S. 24–27.
3. Bohdanova Y. V. Stan metabolichnykh i rehuliatornykh protsesiv u khvorykh na khvorobu Parkinsona zalezhno vid stu- penia tiazhkosti ta skhemy likuvannia // Ukrainskyi visnyk psykho- nevrolohii. 2012. T. 29, vyp. 2 (71). S. 5–8.
4. Andre X.C.N. Valente, Altynai Adilbayeva, Tursonjan Tokay, Albert Rizvanov. The Universal Non-Neuronal Nature of Par- kinson’s Disease: A Theory. Cent Asian J Glob Health. 2016 Jun. No. 5(1). Р. 231. 10.5195/cajgh.2016.231. eCollection 2016.
5. Voloshyna N. P., Fedosieiev S. V., Bohdanova I. V. Posta- va i patolohichni pozy u khvorykh z khvoroboiu Parkinsona (diahnostyka, klinichna interpretatsiia). I International Scientific and Theoretical Conference “Interdisciplinary research: scien- tific horizons and perspectives”. Vilnius, Republic of Lithuania – 12 March 2021. Vol. 3. P. 74–79.
6. Benedicte Ballanger, Stéphane Thobois, Pierre Baraduc, Robert Turner, Emmanuel Broussolle, Michel Desmurget. “Para- doxical Kinesis” is not a Hallmark of Parkinson’s disease but a general property of the motor system. Movement Disorders, Wiley. 2006. No. 21 (9). Р. 1490–1495. https://doi.org/10.1002/ mds.20987.
7. N. Rocha, J. Ferreira, I. Barbosa, M. Souza, P. Christo, H. Reis, A. Teixeira. Circulating levels of neurotrophic factors are unchanged in patients with Parkinson’s disease. Arquivos de Neuro-Psiquiatria. 2018. V. 76. P. 310–315. 10.1590/0004- 282X20180035.
8. J. A. Zoladz, J. Majerczak, E. Zeligowska, J. Mencel, A. Jas- kolska, J. Marusiak. Moderate-intensity interval training increases serum brain-derived neurotrophic factor level and decreases inflammation in Parkinson’s disease patients . J. Physiol. Phar- macol. 2014. V. 65(3). P. 441–448.
9. P. G. Chaves da Silva, D. D. Domingues, L. Alves de Car- valho, S. Allodi, C. L. Correa. Neurotrophic factors in Parkinson’s disease are regulated by exercise: Evidence-based practic. Journal of the Neurological Sciences. 2016. V. 363. P. 5–15. https://doi. org/10.1016/j.jns.2016.02.017.
10. F. Cascaes da Silva, R. Iop Rda, P. Domingos dos San- tos, L.M. Aguiar Bezerra de Melo, P. J. Barbosa Gutierres Filho, R. da Silva. Effects of physical-exercise-based rehabilitation programs on the quality of life of patients with Parkinson’s disea se: a systematic review of randomized controlled trials. J Aging Phys Act. 2016. V. 24. P. 484–496. 10.1123/japa.2015-0162.
 11. M. Lauze, J. F. Daneault, C. Duval. The effects of physical activity in Parkinson’s disease: a review. J Parkinsons Dis. 2016. V. 6. P. 685–698. 10.3233/JPD-160790.
12. M. Munneke, M. J. Nijkrake, S. H. Keus, G. Kwakkel, H. W. Berendse, R. A. Roos, G. F. Borm, E. M. Adang, S. Overeem, B. R. Bloem. Efficacy of community-based physiotherapy net- works for patients with Parkinson’s disease: a cluster-ran- domised trial. Lancet Neurol. 2010. V. 9. P. 46–54. 10.1016/ S1474-4422(09)70327-8.
13. G. M. Petzinger, B. E. Fisher, S. McEwen, J. A. Beeler, J. P. Walsh, M. W. Jakowec. Exercise-enhanced neuroplasti- city targeting motor and cognitive circuitry in Parkinson’s disease. Lancet Neurol. 2013. V. 12. P. 716–726. 10.1016/S1474- 4422(13)70123-6.
14. A. L. Ridgel, B. L. Walter, C. Tatsuoka, E. M. Walter, K. Co- lon-Zimmermann, E. Welter, M. Sajatovic. Enhanced Exercise Therapy in Parkinson’s disease: A comparative effectiveness trial. J Sci Med Sport. 2016. V. 19. P. 12–17. 10.1016/j.jsams.2015.01.005.
15. M. Saltychev, E. Barlund, J. Paltamaa, N. Katajapuu, K. Laimi. Progressive resistance training in Parkinson’s disease: a systematic review and meta-analysis. BMJ Open. 2016. V. 6. e008756. 10.1136/bmjopen-2015-008756.
16. M. Schenkman, D. A. Hall, A. E. Baron, R. S. Schwartz, P. Mettler, W. M. Kohrt. Exercise for people in early- or mid- stage Parkinson disease: a 16-month randomized controlled trial. Phys Ther. 2012. V. 92. P. 1395–1410. 10.2522/ptj.20110472.
17. C. L. Tomlinson, C. P. Herd, C. E. Clarke, C. Meek, S. Pa- tel, R. Stowe, K. H. Deane, L. Shah, C. M. Sackley, K. Wheatley, N. Ives. Physiotherapy for Parkinson’s disease: a comparison of techniques. Cochrane Database Syst Rev. 2014. P. Cd002815.
18. Ahlskog J. E. Does vigorous exercise have a neuropro- tective effect in Parkinson disease. Neurology. 2011. V. 77. P. 288–294. 10.1212/WNL.0b013e318225ab66.
19. Hirsch M. A., Farley B. G. Exercise, neuroplasticity and Parkinson’s disease. Eur J Phys Rehabil Med. 2009. No. 45(2). P. 215–229.
20. M. A. Hirsch, E. E. H. van Wegen, M. A. Newman, P. C. Heyn Exercise-induced increase in brain-derived neurotrophic fac- tor in human Parkinson’s disease: a systematic review and meta-analysis. Transl Neurodegener. 2018. V. 7. P. 7. 10.1186/ s40035-018-0112-1.
21. Sh. J. Allen, J. J. Watson, D. K. Shoemark, N. U. Barua, N. K. Patel. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacology & Therapeutics. 2013. V. 138(2). Р. 155–175. https://doi.org/10.1016/j.pharmthera.2013.01.004.
22. Grondin R., Gash D. Glial cell line-derived neurotrophic factor (GDNF): a drug candidate for the treatment of Parkinson’s disease. J Neurol. 1998. V. 245. P. 35–42. https://doi.org/10.1007/ PL00007744.
23. V. B. Matthews, M. B. Aström, M. H. Chan, C. R. Bruce, K. S. Krabbe, O. Prelovsek et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009. V. 52. P. 1409–1418. 10.1007/ s00125-009-1364-1.
24. Pratesi A. Skeletal muscle: an endocrine organ. Clin. Cases Miner. Bone Metab. 2013. V. 10. P. 11–14. 10.11138/cc- mbm/2013.10.1.011
25. Paulina Małczyńska-Sims, Małgorzata Chalimoniuk and Anna Sułek Małczyńska-Sims P. The effect of endurance train- ing on brain-derived neurotrophic factor and inflammatory markers in healthy people and Parkinson’s disease. A Narrative Review. Frontiers in Physiology. 2020. V. 11. P. 1380. https://doi. org/10.3389/fphys.2020.578981.