ГоловнаArchive of numbers2021Volume 29, issue 2 (107)Peculiarities of neuroregulatory mechanisms of adaptation under alcohol dependence (experimental study)
Title of the article | Peculiarities of neuroregulatory mechanisms of adaptation under alcohol dependence (experimental study) | ||||
Authors |
Berchenko Olga Titkova Anna Shlyakhova Anna Veselovska Olena Prikhodko Olena |
||||
In the section | DIAGNOSTICS AND THERAPY OF MENTAL AND NARCOLOGICAL DISORDERS | ||||
Year | 2021 | Issue | Volume 29, issue 2 (107) | Pages | 36-40 |
Type of article | Scientific article | Index UDK | 612.820:616-092.9 | Index BBK | - |
Abstract | DOI: https://doi.org/10.36927/2079-0325-V29-is2-2021-6 Neurophysiological and biochemical markers of alcohol dependence were identified in a study conducted in laboratory rats at the systemic and molecular levels. It has been shown that long-term alcohol consumption is accompanied by an increase in dopamine levels in the ventral tegmental area and a decrease in GABA and BDNF levels in the hippocampus and serum and leads to attenuation of neocortex control of the limbic emotional-motivational system of the brain. Disturbance of the mechanisms of structural and functional organization of wake-sleep processes and regulation of emotional reactions, which is reflected in the suppression of slow-wave sleep, reduction of paradoxical sleep, inhibition of positive emotional centers, the development of anxiety and depression have been determined. Key words: alcohol dependence, sleep-wake, anxiety, depression, catecholamines, GABA, BDNF | ||||
Key words | alcohol dependence, sleep-wake, anxiety, depression, catecholamines, GABA, BDNF | ||||
Access to full text version of the article pdf | download | ||||
Bibliography | 1. Spanagel R. Alcoholism: a systems approach from molecular physiology to addictive behavior // Physiological reviews. 2009. Vol. 89 (2). Р. 649—705. DOI: 10.1152/physrev.00013.2008. 2. Koob G. F., Le Moal M. Drug addiction, dysregulation of reward, and allostasis // Neuropsychopharmacology. 2001. Vol. 24 (2). P. 97—129. DOI: 10.1016/s0893-133x(00)00195-0. 3. Russo S. J., Mazei-Robison M. S., Ables J. L., Nestler E. J. Neurotrophic factors and structural plasticity in addiction // Neuropharmacology. 2009. 56 Suppl 1. P.73—82. DOI: 10.1016/j. neuropharm.2008.06.059. 4. Smith M. L., Lopez M. F., Wolen A. R., Becker H. C., Miles M. F. Brain regional gene expression network analysis identifies unique interactions between chronic ethanol exposure and consumption // PLoS ONE. 2020. Vol. 15 (5). P. 1—26. DOI: 10.1371/journal.pone.0233319. 5. Vorobeva T. M. Neyrobiologiya vtorichno priobretennyih motivatsiy // Mezhdunarodnyiy meditsinskiy zhurnal. 2002. № 1-2. S. 211—7. 6. Koob G. F. Volkow N. D. Neurocircuitry of addiction: a neurocircuitry analysis // Lancet Psychiatry. 2016 Aug;3(8):760-773. DOI: 10.1016/S2215-0366(16)00104-8. 7. Veselovsʹka O. V., Šlâhova A. V., Berčenko O. G., Tìtkova A. M. Nejroadaptacìâ v sistemì emocìjnogo pìdkrìplennâ pri alkogolʹnìj zaležnostì // Ukraïnsʹkij vìsnik psihonevrologìï. 2020. T. 28, vip. 2 (103). S. 22—5. DOI: 10.36927/2079-0325-V28-is2-2020-4. 8. Conte R., Ladd F. V. L., Ladd A. A. B. L., Moreira A. L., Sueur-Maluf L.L., Viana M.B., Céspedes I.C. Behavioral and stereological analysis of the prefrontal cortex of rats submitted to chronic alcohol intake // Behav Brain Res. 2019. Vol. 362. P. 21—7. DOI: 10.1016/j.bbr.2019.01.003. 9. Wolen A. R., Miles M. F. Identifying gene networks underlying the neurobiology of ethanol and alcoholism // Alcohol research: current reviews. 2012. Vol. 34 (3). P. 306—17. PMID: 23134046. 10. Homberg J. R., Molteni R., Calabrese F., Riva M. A. The serotonin-BDNF duo: developmental implica tions for the vulnerability to psychopathology // Neurosci. Biobehav. Rev. 2014. Vol. 43. P. 35–47. DOI: 10.1016/j.neubiorev.2014.03.012. 11. Rodina V. I., Krupina N. A., Kryizhanovskiy G. N., Oknina N. B. Mnogoparametrovyiy metod kompleksnoy otsenki trevozhno-fobicheskih sostoyaniy u kryis // Zhurn. vyisshey nervnoy deyatelnosti. 1993. В. 5. С. 1006—16. PMID: 8249450. 12. Loskutova L. V., Shtark M. B., Epstein O. I. Efficiency of ultralow doses of antibodies to S100 protein and delta sleep-inducing peptide in rats with anxious depression. Bull Exp Biol Med. 2003 Jan; 135 Suppl 7: 20-2. DOI: 10.1023/A:1024797722719.. 13. Buresh Ya., Bureshova O., Hyuston D. P. Metodiki i osnovnyie eksperimentyi po izucheniyu mozga i povedeniyu. M. : Vyisshaya shkola; 1991. 399 c. 14. Olds J., Milner P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain // J. Comp. Physiol. Psychol. 1954. № 47. P. 419—27. DOI: 10.1037/h0058775. 15. Drucker-Colin E. R. Chronic administration of chloramphenicol — a protein synthesis inhibitor selectively decreases REM sleep // Behav. and Neurol. Biol. 1980. Vol. 29. P. 410-413. DOI: https://doi.org/10.1016/S0163-1047(80)90449-5. 16. Brower K. J. Alcohol’s Effects on Sleep in Alcoholics // Alcohol Res Health. 2001. Vol 25(2). P. 110–125. PMID: 11584550 17. Fein G., Cardenas V. A. Neuroplasticity in human alcoholism: studies of extended abstinence with potential treatment implications // Alcohol Research. 2015. Vol. 37 (1). Р. 125—41. PMID: 26259093. 18. Rachdaoui N., Sarkar D. K., Phil D. Pathophysiology of the effects of alcohol abuse on the endocrine system // Alcohol Research. 2017. Vol. 38 (2). P. 255—76. PMID: 28988577. 19. Keiflin R., Janak P. H. Dopamine prediction errors in reward learning and addiction: from theory to neural circuitry // Neuron. 2015. Vol. 88 (2). P. 247—63. DOI: 10.1016/j.neuron.2015.08.037. |