ГоловнаArchive of numbers2021Volume 29, issue 2 (107)Peculiarities of neuroregulatory mechanisms of adaptation under alcohol dependence (experimental study)
Title of the article Peculiarities of neuroregulatory mechanisms of adaptation under alcohol dependence (experimental study)
Authors Berchenko Olga
Titkova Anna
Shlyakhova Anna
Veselovska Olena
Prikhodko Olena
In the section DIAGNOSTICS AND THERAPY OF MENTAL AND NARCOLOGICAL DISORDERS
Year 2021 Issue Volume 29, issue 2 (107) Pages 36-40
Type of article Scientific article Index UDK 612.820:616-092.9 Index BBK -
Abstract DOI: https://doi.org/10.36927/2079-0325-V29-is2-2021-6 Neurophysiological and biochemical markers of alcohol dependence were identified in a study conducted in laboratory rats at the systemic and molecular levels. It has been shown that long-term alcohol consumption is accompanied by an increase in dopamine levels in the ventral tegmental area and a decrease in GABA and BDNF levels in the hippocampus and serum and leads to attenuation of neocortex control of the limbic emotional-motivational system of the brain. Disturbance of the mechanisms of structural and functional organization of wake-sleep processes and regulation of emotional reactions, which is reflected in the suppression of slow-wave sleep, reduction of paradoxical sleep, inhibition of positive emotional centers, the development of anxiety and depression have been determined. Key words: alcohol dependence, sleep-wake, anxiety, depression, catecholamines, GABA, BDNF
Key words alcohol dependence, sleep-wake, anxiety, depression, catecholamines, GABA, BDNF
Access to full text version of the article pdf download
Bibliography 1. Spanagel R. Alcoholism: a systems approach from molecular physiology to addictive behavior // Physiological reviews. 2009. Vol. 89 (2). Р. 649—705. DOI: 10.1152/physrev.00013.2008. 2. Koob G. F., Le Moal M. Drug addiction, dysregulation of reward, and allostasis // Neuropsychopharmacology. 2001. Vol. 24 (2). P. 97—129. DOI: 10.1016/s0893-133x(00)00195-0. 3. Russo S. J., Mazei-Robison M. S., Ables J. L., Nestler E. J. Neurotrophic factors and structural plasticity in addiction // Neuropharmacology. 2009. 56 Suppl 1. P.73—82. DOI: 10.1016/j. neuropharm.2008.06.059. 4. Smith M. L., Lopez M. F., Wolen A. R., Becker H. C., Miles M. F. Brain regional gene expression network analysis identifies unique interactions between chronic ethanol exposure and consumption // PLoS ONE. 2020. Vol. 15 (5). P. 1—26. DOI: 10.1371/journal.pone.0233319. 5. Vorobeva T. M. Neyrobiologiya vtorichno priobretennyih motivatsiy // Mezhdunarodnyiy meditsinskiy zhurnal. 2002. № 1-2. S. 211—7. 6. Koob G. F. Volkow N. D. Neurocircuitry of addiction: a neurocircuitry analysis // Lancet Psychiatry. 2016 Aug;3(8):760-773. DOI: 10.1016/S2215-0366(16)00104-8. 7. Veselovsʹka O. V., Šlâhova A. V., Berčenko O. G., Tìtkova A. M. Nejroadaptacìâ v sistemì emocìjnogo pìdkrìplennâ pri alkogolʹnìj zaležnostì // Ukraïnsʹkij vìsnik psihonevrologìï. 2020. T. 28, vip. 2 (103). S. 22—5. DOI: 10.36927/2079-0325-V28-is2-2020-4. 8. Conte R., Ladd F. V. L., Ladd A. A. B. L., Moreira A. L., Sueur-Maluf L.L., Viana M.B., Céspedes I.C. Behavioral and stereological analysis of the prefrontal cortex of rats submitted to chronic alcohol intake // Behav Brain Res. 2019. Vol. 362. P. 21—7. DOI: 10.1016/j.bbr.2019.01.003. 9. Wolen A. R., Miles M. F. Identifying gene networks underlying the neurobiology of ethanol and alcoholism // Alcohol research: current reviews. 2012. Vol. 34 (3). P. 306—17. PMID: 23134046. 10. Homberg J. R., Molteni R., Calabrese F., Riva M. A. The serotonin-BDNF duo: developmental implica tions for the vulnerability to psychopathology // Neurosci. Biobehav. Rev. 2014. Vol. 43. P. 35–47. DOI: 10.1016/j.neubiorev.2014.03.012. 11. Rodina V. I., Krupina N. A., Kryizhanovskiy G. N., Oknina N. B. Mnogoparametrovyiy metod kompleksnoy otsenki trevozhno-fobicheskih sostoyaniy u kryis // Zhurn. vyisshey nervnoy deyatelnosti. 1993. В. 5. С. 1006—16. PMID: 8249450. 12. Loskutova L. V., Shtark M. B., Epstein O. I. Efficiency of ultralow doses of antibodies to S100 protein and delta sleep-inducing peptide in rats with anxious depression. Bull Exp Biol Med. 2003 Jan; 135 Suppl 7: 20-2. DOI: 10.1023/A:1024797722719.. 13. Buresh Ya., Bureshova O., Hyuston D. P. Metodiki i osnovnyie eksperimentyi po izucheniyu mozga i povedeniyu. M. : Vyisshaya shkola; 1991. 399 c. 14. Olds J., Milner P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain // J. Comp. Physiol. Psychol. 1954. № 47. P. 419—27. DOI: 10.1037/h0058775. 15. Drucker-Colin E. R. Chronic administration of chloramphenicol — a protein synthesis inhibitor selectively decreases REM sleep // Behav. and Neurol. Biol. 1980. Vol. 29. P. 410-413. DOI: https://doi.org/10.1016/S0163-1047(80)90449-5. 16. Brower K. J. Alcohol’s Effects on Sleep in Alcoholics // Alcohol Res Health. 2001. Vol 25(2). P. 110–125. PMID: 11584550 17. Fein G., Cardenas V. A. Neuroplasticity in human alcoholism: studies of extended abstinence with potential treatment implications // Alcohol Research. 2015. Vol. 37 (1). Р. 125—41. PMID: 26259093. 18. Rachdaoui N., Sarkar D. K., Phil D. Pathophysiology of the effects of alcohol abuse on the endocrine system // Alcohol Research. 2017. Vol. 38 (2). P. 255—76. PMID: 28988577. 19. Keiflin R., Janak P. H. Dopamine prediction errors in reward learning and addiction: from theory to neural circuitry // Neuron. 2015. Vol. 88 (2). P. 247—63. DOI: 10.1016/j.neuron.2015.08.037.