ГоловнаArchive of numbers2019Volume 27, issue 4 (101)Modern non-medicinal methods of influence on neuroplasticity in the system of neurorehabilitation (literature review)
Title of the article Modern non-medicinal methods of influence on neuroplasticity in the system of neurorehabilitation (literature review)
Authors Chernenko Maksym
In the section LITERATURE REVIEW
Year 2019 Issue Volume 27, issue 4 (101) Pages 85-90
Type of article Scientific article Index UDK 616-085:616-036.66 Index BBK -
Abstract In this article, the authors addressed the impact of non-drug methods on neuroplasticity in the neurorehabilitation system. Multilevel neuroplastic eff ects of electromagnetic fi elds caused by transcranial magnetic stimulation (TMS) are presented. The effects of TMS on neurotransmitters and synaptic plasticity, glial cells and the prevention of neuronal death are examined. The neurotrophic eff ects of TMS on the growth of dendrites, growth and neurotrophic factors are described. The eff ect of TMS on the genetic apparatus of neurons is traced. It has been demonstrated that TMS has a proven ability to modulate the internal activity of the brain in a frequency-dependent manner, generate contralateral responses, provide, along with the neuromodulatory and neurostimulating eff ect, infl uence the brain as a global dynamic system.
Key words neuroplasticity, neurorehabilitation, synaptic plasticity, transcranial magnetic stimulation
Access to full text version of the article pdf download
Bibliography

1. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters / K. D. Piatkevich, E. E. Jung, C. Straub [et al.] // Nat. Chem. Biol. 2018. Vol. 14(4). Р. 352—360. DOI: 10.1038/s41589-018-0004-9.
2. Nitsche M. A., Paulus W. Transcranial direct current stimulation-update // Restor Neurol Neurosci. 2011. Vol. 29(6). Р. 463—92. DOI: 10.3233/RNN-2011-0618.
3. Tufail Y., Pati S. Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound // Nature Protocol. 2011. Vol. 6(9). Р. 1453—70. DOI: 10.1038/nprot.2011.371.
4. Kim K.-U., Kim S. H., An T. G. Effect of transcranial direct current stimulation on visual perception function and performance capability of activities of daily living in stroke patients // J. Phys. Ther. Sci. 2016. Vol. 28. Р. 2572—2575. DOI: 10.1589/jpts.28.2572.
5. Combination of transcranial direct current stimulation and neuromuscular electrical stimulation improves gait ability in a patient in chronic stage of stroke / T. Satow, T. Kawase, A. Kitamura [et al.] // Case Rep. Neurol. 2016. Vol. 8. Р. 39—46. DOI: 10.1159/000444167.
6. Constraint-induced movement therapy combined with transcranial direct current stimulation over premotor cortex improves motor function in severe stroke: a pilot randomized controlled trial / S. M. Andrade, L. M. Batista, L. L. Nogueira [et al.] // Rehabil. Res. Pract. 2017. DOI: 10.1155/2017/6842549.
7. Optimization of the navigated tms mapping algorithm for accurate estimation of cortical muscle representation characteristics / D. O. Sinitsyn, A. Y. Chernyavskiy, A. G. Poydasheva [et al.] // Brain Sciences. 2019. Vol. 9(4). Р. 1—21. DOI: 10.3390/ brainsci9040088.
8. Metod TMS-EEG: vozmozhnosti i perspektivyi / A. G. Poydasheva, I. S. Bakulin, L. A. Legostaeva [i dr.] // Zhurnal vyisshey nervnoy deyatelnosti im. I. P. Pavlova. 2019. T. 69 (3). S. 267—279. DOI: 10.1134/S0044467719030092.
9. Transkranialnaya elektricheskaya stimulyatsiya v uluchshenii funktsii ruki pri insulte / I. S. Bakulin, A. G. Poydasheva, N. A. Pavlov [i dr.] // Uspehi fiziologicheskih nauk. 2019. T. 50 (1). S. 90—104. DOI: 10.1134/S030117981901003X.
10. Effects of Navigated Repetitive Transcranial Magnetic Stimulation after Stroke / A. V. Chervyakov, A. G. Poydasheva, R. H. Lyukmanov [et al.] // Journal of Clinical Neurophysiology. 2018. Vol. 35(2). Р. 166—172. DOI: 10.1097/WNP.0000000000000456.
11. Transcranial and spinal cord magnetic stimulation in treatment of spasticity. A literature review and meta-analysis / J. Korzhova, D. Sinitsyn, A. Chervyakov [et al.] // European Journal of Physical and Rehabilitation Medicine. 2018. Vol. 54(1). Р. 75—84. DOI: 10.23736/S1973-9087.16.04433-6.
12. Bezopasnost transkranialnoy magnitnoy stimulyatsii: obzor mezhdunarodnyih rekomendatsiy i novyie dannyie / [N. A. Suponeva, I. S. Bakulin, A. G. Poydasheva, Piradov M. A.] // Nervno-myishechnyie bolezni. 2017. T. 7. № 2. S. 21—36. URL: https://doi.org/10.17650/2222-8721-2017-7-2-21-36.
13. Transcranial magnetic stimulation for the treatment of central post-stroke pain / A. V. Chervyakov, A. V. Belopasova, A. G. Poydasheva [et al.] // Human Physiology. 2016. Vol. 42(8). Р. 844—849. DOI: 10.1134/S036211971608003X.
14. Ritmicheskaya transkranialnaya magnitnaya stimulyatsiya v nevrologii i psihiatrii / A. V. Chervyakov, A. G. Poydasheva, Yu. E. Korzhova [i dr.] // Zhurnal nevrologii i psihiatrii im. S. S. Korsakova. 2015. № 12. S. 7—18. DOI: 10.17116/ jnevro20151151127-18.
15. Bieliaiev A. A., Isaikova O. I., Son A. S. Likuvalni efekty transkranialnoi mahnitnoi stymuliatsii pry zakhvoriuvanniakh nervovoi systemy // Dosiahnennia biolohii ta medytsyny. 2015. № 1 (25). S. 71—75. URL: http://nbuv.gov.ua/UJRN/ dbtm_2015_1_19.
16. Chervyakov A. V., Chernyavsky A. Y., Sinitsyn D. O., Piradov M. A. Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation // Front. in Hum. Neurosci. 2015 Jun 16; 9: 303. DOI: 10.3389/fnhum.2015.00303.
17. Rosenkranz K., Kacar A., Rothwell J. C. Differential modulation of motor cortical plasticity and excitability in early and late phases of human motor learning // J. Neurosci. 2007. Vol. 27. No. 44. P. 12058—12066. DOI: https://doi.org/10.1523/ JNEUROSCI.2663-07.2007.
18. Ziemann, U. TMS induced plasticity in human cortex // Rev. Neurosci. 2004. Vol. 15. No. 4. P. 253—266. PMID: 15526550.
19. Maeda F., Kleiner-Fisman G., Pascual-Leone A. Motor facilitation while observing hand actions: specificity of the effect and role of observer’s orientation // J. Neurophysiol. 2002. No. 87. Р. 1329—1335. DOI: 10.1152/jn.00773.2000.
20. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus / [A. P. Strafella, T. Paus, J. Barrett, Dagher A.] // J. Neurosci. 2001. No. 21(15). Р. 1—4. PMID: 11459878.
21. Cho S. S., Strafella A. P. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex // PLoS One. 2009. DOI: 10.1371/journal.pone.0006725.
22. Theta burst stimulation-induced inhibition of dorsolateralprefrontal cortex reveals hemispheric asymmetry in striatal dopamine release during a set-shifting task: a TMS-[11C]raclopride PET study / Ko J. H., Monchi O., Ptito A. [et al.] // Eur. J. Neurosci. 2008. No. 28. Р. 2147—2155. DOI: 10.1111/j.1460-9568.2008.06501.x.
23. The after-effect of human theta burst stimulation is NMDA receptor dependent / [Y. Z. Huang, R. S. Chen, J. C. Rothwell, H. Y. Wen] // Clin. Neurophysiol. 2007. No. 118. Р. 1028—1032. DOI: 10.1016/j.clinph.2007.01.021.
24. Lisanby S. H., Belmaker R. H. Animal models of the mecha nisms of action of repetitive transcranial magnetic stimulation (rTMS): comparisons with electroconvulsive shock (ECS) // Depress. Anxiety. 2000. No. 12. Р. 178—187. DOI: 10.1002/1520-6394(2000)12:3<178::AID-DA10>3.0.CO;2-N.
25. Extremely low-frequency magnetic fields modulate nitric oxide signaling in rat brain / S. Cho, Y. Nam, L. Chu [et al.] // Bioelectromagnetics. 2012. No. 33. Р. 568—574. DOI: 10.1002/ bem.21715.
26. Effects of voluntary activity on the excitability of motor axons in the peroneal nerve / Kuwabara S., Cappelen-Smith C., Lin C. S. [et al.] // Muscle Nerve. 2002. No. 25. Р. 176—184. DOI: 10.1002/mus.10030.
27. Hoogendam J. M., Ramakers G. M., Di Lazzaro V. Physiology of repetitive transcranial magnetic stimulation of the human brain // Brain Stimul. 2010. No. 2. Р. 95—118. DOI: 10.1016/j. brs.2009.10.005.
28. Duffau H. Brain plasticity: from pathophysiological mechanisms to therapeutic applications // J. Clin. Neurosci. 2006. No. 13. Р. 885—897. DOI: 10.1016/j.jocn.2005.11.045.
29. Cooke S. F., Bliss T. V. Plasticity in the human central nervous system // Brain. 2006. No. 129 (Pt. 7). Р. 1659—1673. DOI: 10.1093/brain/awl082.
30. Teo J. T., Swayne O. B., Rothwell J. C. Further evidence for NMDA-dependence of the after-effects of human theta burst stimulation // Clin. Neurophysiol. 2007. No. 118. Р. 1649—1651. DOI: 10.1016/j.clinph.2007.04.010.
31. Structural brain alterations following 5 days of intervention: dynamic aspects of neuroplasticity / A. May, G. Hajak, S. Ganssbauer [et al.] // Cereb. Cortex. 2007. No. 17. Р. 205—210. DOI: 10.1093/cercor/bhj138.
32. May A. Experience-dependent structural plasticity in the adult human brain // Trends Cogn. Sci. 2011. No. 15. Р. 475—482. DOI: 10.1016/j.tics.2011.08.002.
33. Chronic repetitive transcranial magnetic stimulation increases hippocampal neurogenesis in rats / E. Ueyama, S. Ukai, A. Ogawa [et al.] // Psychiatry Clin. Neurosci. 2011. No. 65. Р. 77—81. DOI: 10.1111/j.1440-1819.2010.02170.x.
34. The effects of high-intensity pulsed electromagnetic field on proliferation and differentiation of neural stem cells of neonatal rats in vitro / D. P. Meng, T. Xu, F. J. Guo [et al.] // J. Huazhong Univ. Sci. Technolog. Med. Sci. 2009. Vol. 29. Р. 732—736. DOI: 10.1007/s11596-009-0612-4.
35. Neurogenesis in the subventricular zone following transcranial magnetic field stimulation and nigrostriatal lesions / O. Arias-Carrion, L. Verdugo-Diaz, A. Feria-Velasco [et al.] // J. Neurosci. Res. 2004. Vol. 78. Р. 16—28. DOI: 10.1002/jnr.20235.
36. Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures / A. Vlachos, F. Muller-Dahlhaus, J. Rosskopp [et al.] // J. Neurosci. 2012. Vol. 32. P. 17514—17523. DOI: 10.1523/JNEUROSCI.0409-12.2012.
37. Repetitive transcranial magnetic stimulation for protection against delayed neuronal death induced by transient ischemia / [M. Fujiki, H. Kobayashi, T. Abe, T. Kamida] // J. Neurosurg. 2003. Vol. 99. Р. 1063—1069. DOI: 10.3171/jns.2003.99.6.1063.
38. Ogiue-Ikeda М., Kawato S., Ueno S. Acquisition of ischemic tolerance by repetitive transcranial magnetic stimulation in the rat hippocampus // Brain. 2005. No. 1037. Р. 7—11. DOI: 10.1016/j.brainres.2004.10.063.
39. Feng H. L., Yan L., Cui L. Y. Effects of repetitive transcranial magnetic stimulation on adenosine triphosphate content and microtubule associated protein-2 expression after cerebral ischemia-reperfusion injury in rat brain // Chin. Med. J. 2008. No. 121(14). Р. 1307—1312. PMID: 18713553. 40. Protective effects of repetitive transcranial magnetic stimulation in a rat model of transient cerebral ischaemia: a microPET study / F. Gao, S. Wang, Y. Guo [et al.] // Eur. J. Nucl. Med. Mol. Imaging. 2010. No. 37. Р. 954—961. DOI: 10.1007/ s00259-009-1342-3.
41. Yoon K. J., Lee Y. T., Han T. R. Mechanism of functional recovery after repetitive transcranial magnetic stimulation (rTMS) in the subacute cerebral ischemic rat model: neural plasticity or anti-apoptosis? // Exp. Brain Res. 2011. No. 214. Р. 549—556. DOI: 10.1007/s00221-011-2853-2.
42. Pretreatment with low-frequency repetitive transcranial magnetic stimulation may influence neuronal Bcl-2 and Fas protein expression in the CA1 region of the hippocampus / S. Ke, H. Zhao, X. Wang [et al.] // Neural. Regen. Res. 2010. No. 5. Р. 895—900. DOI: 10.3969/j.issn.1673-5374.2010.12.003.
43. Low-frequency repetitive transcranial magnetic stimulation for the treatment of refractory partial epilepsy: a controlled clinical study / W. Sun, W. Mao, X. Meng [et al.] // Epilepsia. 2012. No. 53. Р. 1782—1789. DOI: 10.1111/j.1528-1167.2012.03626.x.
44. Acute repetitive transcranial magnetic stimulation reactivates dopaminergic system in lesion rats / H. Funamizu, M. Ogiue-Ikeda, H. Mukai [et al.] // Neurosci. Lett. 2005. No. 383. Р. 77—81. DOI: 10.1016/j.neulet.2005.04.018.
45. Magnetic stimulation influences injury-induced migration of white matter astrocytes / Z. Y. Fang, Z. Li, L. Xiong [et al.] // Biol. Med. 2010. № 29. Р. 113—121. DOI: 10.3109/15368378.2010.500568. 46. Magnetic stimulation modulates structural synaptic plasticity and regulates BDNF-TrkB signal pathway in cultured hippocampal neurons / J. Ma, Z. Zhang, Y. Su [et al.] // Neurochem. Int. 2013. No. 62. Р. 84—91. DOI: 10.1016/j.neuint.2012.11.010.
47. Baquet Z. C., Gorski J. A., Jones K. R. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor // J. Neurosci. 2004. № 24(17). Р. 4250—4258. DOI: 10.1523/ JNEUROSCI.3920-03.2004.
48. High-Frequency Repetitive Transcranial Magnetic Stimulation Improves Refractory Depression by Influencing Catecholamine and Brain-Derived Neurotrophic Factors / T. Yukimasa, R. Yoshimura, A. Tamagawa [et al.] // Pharmacopsychiatry. 2006. № 39(2). Р. 52—59. DOI: 10.1055/s-2006-931542.
49. Role of serotonergic gene polymorphisms on response to transcranial magnetic stimulation in depression / R. Zanardini, L. Magri, D. Rossini [et al.] // European Neuropsychopharmacology. 2007. Vol. 17, Issue 10. Р. 651—657. DOI: 10.1016/j.euroneuro. 2007.03.008.
50. Lang C., Schuler D. Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes // J. of Physics: Condensed Matter. 2006. Vol. 18. No. 38. Р. 2815-2828. DOI: 10.1088/0953-8984/18/38/S19.
51. Effects of electroconvulsive therapy and repetitive transcranial magnetic stimulation on serum brain-derived neurotrophic factor levels in patients with depression / L. Gedge, A. Beaudoin, L. Lazowski [et al.] // Front Psychiatry. 2012. Feb 24; 3: 12. DOI: 10.3389/fpsyt.2012.00012.
52. Repetitive transcranial magnetic stimulation enhances BDNF-TrkB signaling in both brain and lymphocyte / H. Y. Wang, D. Crupi, J. Liu [et al.] // J. Neurosci. 2011. No. 31. Р. 11044—11054. DOI: 10.1523/JNEUROSCI.2125-11.2011.
53. Transcranial magnetic stimulation and BDNF plasma levels in amyotrophic lateral sclerosis / F. Angelucci, A. Oliviero, F. Pilato [et al.] // Neuroreport. 2004. Vol. 15(4). Р. 717—720. DOI: 10.1097/00001756-200403220-00029.
54. Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain / M. B. Muller, N. Toschi, A. E. Kresse [et al.] // Neuropsychopharmacology. 2000. No. 23. Р. 205—215. DOI: 10.1016/S0893-133X(00)00099-3.
55. Repetitive transcranial magnetic stimulation activates specific regions in rat brain / R-R. Ji, T. E. Schlaepfer, C. D. Aizenman [et al.] // Proc. Natl. Acad. Sci. U. S. A. 1998. No. 95. Р. 15635—15640. DOI: 10.1073/pnas.95.26.15635.
56. Chronic repetitive transcranial magnetic stimulation enhances c-fos in the parietal cortex and hippocampus / A. Hausmann, C. Weis, J. Marksteiner [et al.] // Brain Res. Mol. Brain Res. 2000. No. 76. Р. 355—362. DOI: 10.1016/s0169-328x(00)00024-3.
57. High- and low-frequency repetitive transcranial magnetic stimulation differentially activates c-Fos and zif268 protein expression in the rat brain / S. Aydin-Abidin, J. Trippe, K. Funke [et al.] // Exp. Brain Res. 2008. No. 188. Р. 249—261. DOI: 10.1007/ s00221-008-1356-2.
58. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS / B. Cheeran, P. Talelli, F. Mori [et al.] // J. Physiol. 2008. No. 586. Р. 5717—5725. DOI: 10.1113/jphysiol.2008.159905.
59. Role of serotonergic gene polymorphisms on response to transcranial magnetic stimulation in depression / R. Zanardi, L. Magri, D. Rossini [et al.] // Eur. Neueopsychopharmacol. 2007. No. 17. С. 651—7. DOI: 10.1016/j.euroneuro.2007.03.008.
60. Motor cortex-induced plasticity by noninvasive brain stimulation: a comparison between transcranial direct current stimulation and transcranial magnetic stimulation / M. Simis, B. O. Adeyemo, L. F. Medeiros [et al.] // Neuroreport. 2013. No. 24. С. 973—975. DOI: 10.1097/WNR.0000000000000021.
61. Transcranial magnetic stimulation modulates the brain’s intrinsic activity in a frequency-dependent manner / [Mark C. Eldaief, Mark A. Halko, Randy L. Buckner, and Alvaro Pascual-Leone] // Proc. Natl. Acad. Sci. U.S.A. 2011. No. 108. Р. 21229—21234. DOI: 10.1073/pnas.1113103109.
62. Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation / S. Komssi, H. J. Aronen, J. Huttunen [et al.] // Clin. Neurophysiol. 2001. No. 113. Р. 175—184. PMID: 11856623.
63. Luber B., Lisanby S. H. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS) // Neuroimage. 2014. No. 3. Р. 961—970. DOI: 10.1016/j.neuroimage. 2013.06.007.