ГоловнаArchive of numbers2019Volume 27, issue 2 (99)Amyloidosis of the central nervous system: common features of various diseases
Title of the article Amyloidosis of the central nervous system: common features of various diseases
Authors Silonov Serhii
Zinych Ivan
In the section MECHANISMS OF FORMATION AND MODERN PRINCIPLES OF TREATMENT OF NEUROLOGICAL DISORDERS
Year 2019 Issue Volume 27, issue 2 (99) Pages 15-19
Type of article Scientific article Index UDK 616.894-053.9 Index BBK -
Abstract The elucidation of the molecular mechanisms of the pathological process is an essential condition for the effective therapy and prevention of the disease. During the last decades the medical and social problems caused by so-called misfolding diseases were becoming acute increasingly. Among such diseases a special place belongs to Alzheimer’s, Parkinson’s and Creutzfeldtd — Jakob’s diseases, which are related to the amyloidosis of the central nervous system. All of them are characterized by progressive and irreversible degeneration of brain tissue, which is associated with the deposition of β-structured protein aggregates and the death of nerve cells. Scientifi c achievements of the recent years reveal the general features of the mechanisms of formation and course of these diseases, substantiate the provision on the formation of the embryo of protein aggregation as a key process that leads the course of the disease to a qualitatively new, irreversibly progressive level.
Key words central nervous system, neurodegenerative diseases, protein misfolding, amyloidosis
Access to full text version of the article pdf download
Bibliography


1. Ostapchenko L. I. Biokhimiia : pidruchnyk. K. : Kyivskyi universytet, 2012. 796 с.
2. Verevka S. V. Formation and recognition of superficial microclusters as the integral part of processing of proteins // In: Protein Research Progress: New Research / Boscoe A. B., Listov C. R., Eds. NY : Nova Science Publishers, 2008, P. 9—15.
3. Zabolotny D. I. and Verevka S. V. Inter-Molecular Coordination of the Proteins at Normal and Pathological State // In: Molecular Pathology of Proteins / D. I. Zabolotnyi, Ed. NY : Nova Science Publishers, 2009. P. 1—22.
4. Buxbaum J., Linke R. A molecular history of amyloidoses // J. Mol. Biol. 2012. Vol. 421, No. 2—3. P. 142—159. DOI: 10.1016/j.jmb.2012.01.024.
5. Smirnov V. P., Fadeev M. Yu. Bolezni nakopleniya (tezaurismozyi). N. Novgorod: Izd-vo NGMA, 2007, 104 с.
6. Sideras K., Gertz M. Amyloidosis // Adv. Clin. Chem. 2009. Vol. 47. P. 1—44. PMID: 19634775.
7. Soto C. Unfolding the role of protein misfolding in neurodegene rative diseases // Nat. Rev. Neurosci. 2003. Vol. 4. P. 49—60. DOI: 10.1038/nrn1007.
8. Mukherjee A., Moralez-Scheiching D., Butler P., Soto C. Type 2 diabetes mellitus as a protein misfolding disease // Trends Mol. Med. 2015. Vol. 21, No. 7. P. 439—449. DOI: 10.1016/j.molmed.2015.04.005.
9. Querfurth H., LaFerla F. Alzheimer’s disease // N. Engl. J. Med. 2010. Vol. 362, No. 4. P. 329—344. DOI: 10.1056/NEJMra0909142.
10. Cole S., Vassar R. Isoprenoids in Alzheimer’s disease: a complex relationship // Neurol. Dis. 2006. Vol. 22, No. 2. P. 209—222. URL: https://doi.org/10.1016/j.nbd.2005.11.007.
11. Walker F. Huntington’s disease // Lancet. 2007. 369 (9957). P. 218—228. DOI: https://doi.org/10.1016/S0140-6736(07)60111-1.
12. Davie C. A review of Parkinson’s disease // Br. Med. Bull. 2008. Vol. 86. P. 109—127. DOI: 10.1093/bmb/ldn013.
13. Kazakov V. N., Shlopov V. G. Prionnyie bolezni. Donetsk: Izd-vo «Donbass», 2009. 444 с.
14. Vynohradova R. P., Berdyshev H. D., Verovka S. V. Biokhimiia ta henetyka prioniv, zbudnykiv hubkopodibnykh entsefalopatii. K. : Fitosotsiotsentr, 2000. 56 с.
15. Prusiner S. Neurodegenerative diseases and prions // N. Engl. J. Med. 2001. Vol. 344, No. 20. P. 1516—1522. DOI:10.1056/NEJM200105173442006.
16. Normal host prion protein necessary for scrapie-induced neurotoxicity / Brandner S., Isenmann S., Raeber A. [et al.] // Nature. 1996. 379, No. 6563. P. 339—343. DOI: 10.1038/379339a0.
17. Payne R., Krakauer, D. The paradoxal dynamics of prion disease latency // J. Theor. Biol. 1998. Vol. 191. P. 345—352. DOI:10.1006/jtbi.1997.0627.
18. Prusiner S. B. Prions // Proc. Natl. Acad. Sci. USA. 1998. Vol. 95. P. 13363—13383. PMID: 9811807.
19. Verevka S. V. Parametabolic β-Aggregation of proteins: familiar mechanisms with diverse sequels // In: Advances in Medicine and Biology (Berhardt L. V., Ed.). NY: Nova Science Publishers, 2013. Vol. 72. P. 29—48.
20. Zabolotnyi D. I., Bielousova A. O., Zarytska I. S., Verovka S. V. Autokhtonna β-ahrehatsiia bilkiv: prychyny, molekuliarni mekhanizmy ta patolohichni naslidky // Zhurnal NAMN Ukrainy. 2014. Т. 4, № 4. С. 385—392.
21. Castilla J., Saa P., Hetz C., Soto C. In vitro generation of infectious scrapie prions // Cell. 2005. Vol. 121, No. 2. P. 195—206. DOI: 10.1016/j.cell.2005.02.011.
22. Caughey B., Raymond G. J. The scrapie-associated form of PrP is made from a cell surface precursor that is both protease-and phospholipase-sensitive // J. Biol. Chem. 1991. Vol. 266, No. 27. P. 18217—18223. PMID: 1680859.
23. Verevka S. V. CNS Amyloidosis and Diabetes Mellitus: Vicious Circles of Misfolding // In: Diabetes Mellitus Research Advances (Huber M. N., Ed.). NY: Nova Science Publishers, 2009. P. 169—178.
24. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host / Meyer-Luehmann M., Coomaraswamy J., Bolmont T. [et al.] // Science. 2006. 313, No. 5794. P. 1781—1784. DOI: 10.1126/science.1131864.
25. Ma J., Lindquist S. Conversion of PrP to a self-preparating PrPSc-like conformation in cytosol // Science. 2002. Vol. 298(5599). P. 1785—8. DOI: 10.1126/science.1073619.
26. Jahn T., Radford S. The Yin and Yang of protein folding // FEBS Journ. 2005. Vol. 272, No. 23. P. 5962—5970. DOI:10.1111/j.1742-4658.2005.05021.x.
27. Survival of dopaminergic amacrine cells after nearinfra red light treatment in MPTP-treated mice / Peoples C., Shaw V., Stone J. [et al.] // ISRN Neurology. 2012. P. 1—8. DOI:10.5402/2012/850150.