ГоловнаArchive of numbers2018Volume 26, issue 3 (96)Pharmacogenetic testing as a basis for the selection of antiepilep tic drugs in the treatment of pharmacoresistant epilepsy in children
Title of the article Pharmacogenetic testing as a basis for the selection of antiepilep tic drugs in the treatment of pharmacoresistant epilepsy in children
Authors Tantsura Lyudmyla
Koliada Oleksandr
Pylypets Olena
Tantsura Yevgen
Tretiakov Dmytro
Year 2018 Issue Volume 26, issue 3 (96) Pages 5-9
Type of article Scientific article Index UDK 616.853-056.7: 615.213-08: 575.113.2 Index BBK -
Abstract We analyzed the results of an examination of 68 patients (children and adolescents), 42 (62.69 %) boys and 26 (37.31 %) girls, aged 5 months to 18 years, the average age was 9.6 ± 5.65 years. Children suffer from severe, refractory to the treatment forms of epilepsy. Duration of the disease from 1 month to 16 years. All children were given genetic research using the allelic method CYP2C9*1,*2,*3 of a specifi c polymerase chain reaction. In the study group dominated homozygous carriers by the allele CYP2C9*1 — 76.47 %. This genotype is quite common in many populations and is typical for fast meta bolism. The carrier of CYP2C9*2 and CYP2C9*3 alleles, which is functionally linked with biotransformation of drugs, slowing down their metabolism and occurrence of side effects, was found in 22.53 % of patients.
Key words epilepsy, pharmacoresistance, pharmacogenetic testing, cytochrome P450 isoenzymes, treatment, children
Access to full text version of the article pdf download
Bibliography 1. Генети чес кий паспорт — основа индивидуальной и пре- диктивной медицины / под ред. В. С. Баранова. СПб.: Изд-во Н-Л, 2009. 528 с. 2. Герасимова К. В., Сычев Д. А. Клини чес кая фармакогене- тика: истори чес кий очерк // Медицинские технологии. Оценка и выбор. 2012. № 3. С. 87—94. 3. Anderson G. D. Pharmacokinetic, pharmacodynamic, and pharmacogenetic targeted therapy of antiepileptic drugs // Ther. Drug Monit. 2008. 30; 173—180. 4. Середенин С. Б. Лекции по фармакогенетике. М.: Медицин- ское информационное агентство, 2004. 303 с. 5. Luscher W., Klotz U., Zimprich E., Schmidt D. The clinical impact of pharmacogenetics on the treatment of epilepsy // Epilepsia. 2009 Jan; 50 (1): 1—23. 6. Кукес В. Г., Грачёв С. В., Сычёв Д. А., Раменская Г. В. Мета- бо лизм лекарственных средств // Научные основы персонали- зированной медицины : руководство для врачей. М.: ГЭОТАР- Медиа, 2008. 304 с. 7. Glauser T. A. Biomarkers for antiepileptic drug response // Biomark Med. 2011 Oct; 5 (5): 635—41. 8. Franco V., Perucca E. CYP2C9 polymorphisms and phenytoin metabolism: implications for adverse effects // Expert Opin Drug Metab Toxicol. 2015; 11 (8): 1269—79. 9. Depondt C. Epilepsy pharmacogenetics: science or fi ction? // Med Sci (Paris). 2013; 29 (2): 189—93. doi: 10.1051/medsci/2013292017. 10. Glauser T. A. Biomarkers for antiepileptic drug response // Biomark Med. 2011 Oct; 5 (5): 635—41. 11. Pharmacogenetics and antiepileptic drug metabolism: implication of genetic variants in cytochromes P450 / Saldaña- Cruz A. M., Sánchez-Corona J., Márquez de Santiago D. A. [et al.] // Rev Neurol. 2013 May 1; 56 (9): 471—9. 12. Genetic polymorphism analysis of the drug-metabolizing enzyme CYP2C9 in a Chinese Tibetan population / Jin T., Geng T., He N. [et al.] // Gene. 2015; 567: 196—200. 13. Genetic polymorphisms of VKORC1, CYP2C9, CYP4F2 in Bai, Tibetan Chinese / W. T. Zeng, Q. S. Zheng, M. Huang [et al.] // Pharmazie. 2012; 67: 69—73. 14. CYP2C9 polymorphism analysis in Han Chinese populations: building the largest allele frequency database / D-P. Dai, R-A. Xu, L-M. Hu [et al.] // Pharmacogenomics J. 2014; 14: 85—92. 15. Allele and genotype frequencies of CYP2C9 in a Korean population / Bae J.-W., Kim H.-K., Kim J.-H. [et al.] // Br J Clin Pharmacol. 2005; 60: 418—422. doi: 10.1111/j.1365-2125.2005.02448.x. 16. Frequency of cytochrome P450 2C9 mutant alleles in a Korean population / Yoon Y. R., Shon J. H., Kim M. K. [et al.] // Br J Clin Pharmacol. 2001; 51: 277—280. 17. Nasu K., Kubota T., Ishizaki T. Genetic analysis of CYP2C9 polymorphism in a Japanese population // Pharmacogenetics. 1997; 7: 405—409. 18. Zuo J., Xia D., Jia L., Guo T. Genetic polymorphisms of drugmetabolizing phase I enzymes CYP3A4, CYP2C9, CYP2C19 and CYP2D6 in Han, Uighur, Hui and Mongolian Chinese populations // Pharmazie. 2012; 67: 639—644. 19. Genetic polymorphisms of cytochrome P450 enzymes 2C9 and 2C19 in a healthy Mongolian population in China / Yang Z. F., Cui H. W., Hasi T. [et al.] // Genet Mol Res. 2010; 9: 1844—1851. 20. Genetic polymorphism of CYP2C9 in a Vietnamese Kinh population / Lee S. S., Kim K. M., Thi-Le H. [et al.] // Ther Drug Monit. 2005; 27: 208—210. 21. CYP2C9 polymorphism: prevalence in healthy and warfarintreated Malay and Chinese in Malaysia / Ngow H. A., Wan Khairina W. M., Teh L. K. [et al.] // Singapore Med J. 2009; 50: 490—493. 22. Allele and genotype frequency of CYP2C9 in Tamilnadu population / Adithan C., Gerard N., Vasu S. [et al.] // Eur J Clin Pharmacol. 2003; 59: 707—709. 23. Alzahrani A. M., Ragia G., Hanieh H., Manolopoulos V. G. Genotyping of CYP2C9 and VKORC1 in the Arabic population of Al- Ahsa, Saudi Arabia // BioMed Res Int. 2013; Vol. 2013, Article ID 315980, 6 p. URL : http: //dx.doi.org/10.1155/2013/315980 24. Mirghani R. A., Chowdhary G., Elghazali G. Distribution of the major cytochrome P450 (CYP) 2C9 genetic variants in a Saudi population // Basic Clin Pharmacol Toxicol. 2011; 109: 111—114. 25. Allele and genotype frequencies of polymorphic cytochromes P450 (CYP2C9, CYP2C19, CYP2E1) and dihydropyrimidine dehydrogenase (DPYD) in the Egyptian population / Hamdy S. I.,Hiratsuka M., Narahara K. [et al.] // Br J Clin Pharmacol. 2002; 53: 596—603. 26. Allele and genotype frequencies of the polymorphic cytochrome P450 genes (CYP1A1, CYP3A4, CYP3A5, CYP2C9 and CYP2C19) in the Jordanian population / Yousef A. M., Bulatova N. R., Newman W. [et al.] // Mol Biol Rep. 2012; 39: 9423—9433. 27. Pharmacogenetics of coumarin dosing: prevalence of CYP2C9 and VKORC1 polymorphisms in the Lebanese population / Djaffar- Jureidini I., Chamseddine N., Keleshian S. [et al.] // Genet Test Mol Biomarkers. 2011; 15: 827—830. 28. Frequency of CYP2C9 genotypes among Omani patients receiving warfarin and its correlation with warfarin dose / Tanira M. O., Al-Mukhaini M. K., Al-Hinai A. T. [et al.] // Community Genet. 2007; 10: 32—37. 29. Genetic polymorphism of cytochrome P450 2C9 in a Caucasian and a black African population / Scordo M. G., Aklillu E., Yasar U. [et al.] // Br J Clin Pharmacol. 2001; 52: 447—450. 30. Combined CYP2C9, VKORC1 and CYP4F2 frequencies among racial and ethnic groups / Scott S. A., Khasawneh R., Peter I. [et al.] // Pharmacogenomics. 2010; 11: 781—791. 31. Influence of CYP2C9 Genotype on warfarin dose among African American and European Americans / Limdi N., Goldstein J., Blaisdell J. [et al.] // Per Med. 2007; 4: 157—169. 32. Kudzi W., Dodoo A. N., Mills J. J. Characterisation of CYP2C8, CYP2C9 and CYP2C19 polymorphisms in a Ghanaian population. BMC Med Genet. 2009; 10: 124. 33. Zand N., Tajik N., Moghaddam A. S., Milanian I. Genetic polymorphisms of cytochrome P450 enzymes 2C9 and 2C19 in a healthy Iranian population // Clin Exp Pharmacol Physiol. 2007; 34: 102—105. 34. Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin / Aynacioglu A. S., Brockmoller J., Bauer S. [et al.] // Br J Clin Pharmacol. 1999; 48: 409—415. 35. CYP2C9 genotypes and the quality of anticoagulation control with warfarin therapy among Brazilian patients / Lima M. V., Ribeiro G. S., Mesquita E. T. [et al.] // Eur J Clin Pharmacol. 2008; 64: 9—15. 36. Lower frequency of CYP2C9*2 in Mexican-Americans compared to Spaniards / LLerena A., Dorado P., O’Kirwan F. [et al.] // Pharmacogenomics J. 2004; 4: 403—406. = Lower frequency of CYP2C9*2 in Mexican-Americans compared to Spaniards. 37. Losartan hydroxylation phenotype in an Ecuadorian population: influence of CYP2C9 genetic polymorphism, habits and gender / Dorado P., Beltrán L. J., Machín E. [et al.] // Pharmacogenomics. 2012; 13: 1711—1717. 38. Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population / Yasar U., Eliasson E., Dahl M. L. [et al.] // Biochem Biophys Res Commun. 1999; 254: 628—631. 39. Microarray-based detection of CYP1A1, CYP2C9, CYP2C19, CYP2D6, GSTT1, GSTM1, MTHFR, MTRR, NQO1, NAT2, HLA-DQA1, and AB0 allele frequencies in native Russians / Gra O., Mityaeva O., Berdichevets I. [et al.] // Genet Test Mol Biomarkers. 2010; 14: 329—342. 40. Genetic analysis of the human cytochrome P450 CYP2C9 locus / Stubbins M. J., Harries L. W., Smith G. [et al.] // Pharmacogenetics. 1996; 6: 429—439. 41. Pharmacogenetically relevant polymorphisms in Portugal / Oliveira E., Marsh S., van Booven D. J. [et al.] // Pharmacogenomics. 2007; 8: 703—712. 42. Prevalence of CYP2C9 polymorphisms in the south of Europe / Sanchez-Diz P., Estany-Gestal A., Aguirre C. [et al.] // Pharmaco geno mics J. 2009; 9: 306—310. 43. Frequency of cytochrome P450 2C9 allelic variants in the Chinese and French populations / Yang J. Q., Morin S., Verstuyft C. [et al.] // Fundam Clin Pharmacol. 2003; 17: 373—376. 44. Genetic polymorphism of CYP2C9 and CYP2C19 in a Bolivian population: an investigative and comparative study / Bravo- Villalta H. V., Yamamoto K., Nakamura K. [et al.] // Eur J Clin Pharmacol. 2005; 61: 179—184. 45. Interethnic differences in the relevance of CYP2C9 genotype and environmental factors for diclofenac metabolism in Hispanics from Cuba and Spain / Llerena A., Alvarez M., Dorado P. [et al.] // Pharmaco genomics J. 2014; 14: 229—234. 46. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism / Sullivan-Klose T. H., Ghanayem B. I., Bell D. A. [et al.] // Pharmacogenetics. 1996; 6: 341—349. 47. Genetic polymorphisms of cytochromes P450: CYP2C9, CYP2C19, and CYP2D6 in Croatian population / Bozina N., Granic P., Lalic Z. [et al.] // Croat Med J. 2003; 44: 425—428. 48. Burian M., Grosch S., Tegeder I., Geisslinger G. Validation of a new fluorogenic real-time PCR assay for detection of CYP2C9 allelic variants and CYP2C9 allelic distribution in a German population // Br J Clin Pharmacol. 2002; 54: 518—521. 49. Genetic polymorphisms of drug-metabolizing enzymes CYP2D6, CYP2C9, CYP2C19 and CYP3A5 in the Greek population / Arvanitidis K., Ragia G., Iordanidou M. [et al.] // Fundam Clin Pharmacol. 2007; 21: 419—426. 50. Антоненко П. Б., Кресюн В. И. Поліморфізм генотипу цито хрому Р450 2С9 в Одеському регіоні // Актуальні проблеми сучасної медицини. 2011. № 11(4). С. 51—55. 51. Левкович Н. М., Горовенко Н. Г. Частота розповсюдження алельних варіантів *2 та *3 гена СУР2С9 у населення України // Одеський медичний журнал. 2013. № 2 (136). С. 23—28. 52. Гузева О. В. Оптимизация диагностики и обоснование персонифицированной терапии эпилепсии у детей : автореф. дис. на соискание уч. степени д-ра мед. наук : спец. 14.01.11 «Нервные болезни». СПб., 2014, С. 34. 53. The Effect of Polymorphisms of Cytochrom P450 CYP2C9, CYP2C19 and CYP2D6 on Drug-Resistant Epilepsy in Turkish Children / Seven M., Batar B., Unal S. [et al.] // Molecular Diagnosis&Therapy. 2014; Vol. 18: 229—236. 54. Frequencies of CYP2C9 polymorphisms in Nord Indian population and their association with drug levels in children on phenytoin monotherapy / Сhaudhary N., Kabra M., Gulati S. [et al.] // BMC Pediatr. 2016.