ГоловнаArchive of numbers2017Volume 25, issue 3 (92)Genetic predispositions for depressive disorders
Title of the article Genetic predispositions for depressive disorders
Authors Maruta Natalia
Fedchenko Viktoriya
Linska Kateryna
Year 2017 Issue Volume 25, issue 3 (92) Pages 39-43
Type of article Scientific article Index UDK 616.895.4:575.191 Index BBK -
Abstract The article contains materials of the study of genetic predisposition for depressive disorders formation and the response to antidepressant therapy. Summarizing the fi ndings, it should be noted, that achievements of modern science have proved “polygenic” etiology of depression and the need to use this knowledge in the diagnosis and therapy of this disease. Genes that code neurotransmitters activity (adrenalin, norepinephrine, serotonin and dopamine) metabolism, neurogenesis, neuronal plasticity, and the activity of the immune system are actively involved in the genesis of depression. This research results indicate the possibility of using genetic markers for diagnosis of depression (dysfunction of neurotransmitter, neuronal and immune mechanisms), as well as determination of resistance and therapeutic response. Studies aimed at fi nding substances that inactivate depressogenic genes and their metabolism products are crucial to overcome depression.
Key words depressive disorders, genetic predisposition
Access to full text version of the article pdf download
Bibliography 1. Kerri Smith. Mental health: A world of depression. A global view of the burden caused by depression [Electronic Resource] // Nature. 2014. № 12. Mode of access : URL : http://www.nature.com/ news/mental-health-a-world-of-depression-1.16318. 2. Anguelova M., Benkelfat C., Turecki G. A systematic review of association studies investigating genes coding for serotonin receptors and the serotonin transporter // Mol Psychiat. 2003. Vol. 8. P. 646—653. 3. Sullivan P. F., Neale M. C., Kendler K. S. Genetic epidemiology of major depression: review and meta-analysis // Am. J. Psychiatry. 2000. № 157. Р. 1552—1562. 4. The relationship between panic disorder and major depression. A new family study / Weissman M. M., Wickramaratne P., Adams P. B. [et al.] // Arch. Gen. Psychiatry. 1993. № 50. Р. 767—780. 5. Uher R. The role of genetic variation in the causation of mental illness: an evolution-informed framework // Mol. Psychiatry. 2009. № 14. Р. 1072—1082. 6. Polymorphisms of the glucocorticoid receptor gene and major depression / vanRossum E. F., Binder E. B., Majer M. [et al.] // Biol. Psychiatry. 2006. № 59. Р. 681—688. 7. Meta-analysis of the association between the monoamine oxidase-A gene and mood disorders / M. Fan, B. Liu, T. Jiang [et al.] // Psychiatr Genet. 2010. № 20. Р. 1—7. 8. Yoon H. K., Kim Y. K. Association between glycogen synthase kinase-3β gene polymorphisms and major depression and suicidal behavior in a Korean population // Prog. Neuropscyhopharmacol. Biol Psychiatry. 2010. № 34. Р. 331—334. 9. Yoshimura R., Kishi T., Suzuki A. The brain-derived neurotrophic factor (BDNF) polymorphism Val66Met is associated with neither serum BDNF level nor response to selective serotonin reuptake inhibitors in depressed Japanese patients // Prog. Neuropscyhopharmacol. Biol Psychiatry. 2011. Vol. 35, № 4. P. 1022—1025. 10. Yu H., Chen Z. Y. The role of BDNF in depression on the basis of its location in the neural circuitry // Acta Pharmacol. Sin. 2011. Vol. 32, № 1. P. 3—11. 11. Brain-derived neurotrophic factor-5-HTTLPR gene interactions and environmental modifiers of depression in children / Joan Kaufman, Bao-Zhu Yang, Heather Douglas-Palumberi, [et al.] // Biol. Psychiatry. 2006. Vol. 59. P. 673—680. 12. Savitz J., Solms M., Ramesar R. The molecular genetics of cognition: dopamine, COMT and BDNF // Genes Brain Behavior. 2006. Vol. 5. P. 311—328. 13. Brain-derived neurotrophic factor gene polymorphisms: influence on treatment response phenotypes of major depressive disorder / N. A. Kocabas, I. Antonijevic, C. Faghel, [et al.] // Int. Clin. Psychopharmacol. 2011. Vol. 26, № 1. P. 1—10. 14. Исследование полиморфизма гена мозгового нейротрофи- чес кого фактора у лиц с депрессивными и коморбидными сер- дечно-сосудистыми заболеваниями / М. В. Шмиголь, Л. А. Левчук,Е. В. Лебедева [и др. ] // Фундаментальные исследования. 2012. № 5-2. С. 388—392; 15. Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity / Verhagen M. van der Meij A., van Deurzen P. A., Janzing J. G., [et al.] // Mol Psychiatry. 2010. Vol. 15. P. 260—71. 16. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment / E. B. Binder, D. Salyakina, P. Lichtner [et al.] // Nat. Genet. 2004. № 36. Р. 1319—1325. 17. The FKBP5-gene in depression and treatment response— an association study in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Cohort / Lekman M., Laje G., Charney D. [et al.] // Biol. Psychiatry. 2008. № 63. Р. 1103—1110. 18. Pharmacogenetic analysis of genes implicated in rodent models of antidepressant response: association of TREK1 and treatment resistance in the STAR(*)D study / Perlis R. H., Moorjani P., Fagerness J. [et al.] // Neuropsychopharmacology. 2008. № 33 (12). Р. 2810—2819. doi: 10.1038/npp.2008.6. 19. Variation in catechol-O-methyltransferase is associated with duloxetine response in a clinical trial for major depressive disorder / R. H. Perlis, B. Fijal, D. H. Adams [et al.] // Biol. Psychiatry. 2009. № 65. Р. 785—791. 20. Association study of corticotropin-releasing hormone receptor 1 gene polymorphisms and antidepressant response in major depressive disorders / Liu Z., Zhu F., Wang G. [et al.] // Neuroscience Lett. 2007. № 414. Р. 155—158. 21. Genome-wide pharmacogenetics of antidepressant response in the GENDEP project / Uher R., Perroud N., Ng M. Y. [et al.] // Am. J. Psychiatry. 2010. № 167. Р. 555—564. 22. Maes M. Depression is an inflammatory disease, but cellmediated immune activation is the key component of depression// Prog. Neuropsychopharmacol Biol. Psychiatry. 2011. № 35 (3). Р. 664—675. 23. Makhija K., Karunakaran S. The role of inflammatory cytokines on the aetiopathogenesis of depression // Aust. N. Z. J. Psychiatry. 2013. № 47. Р. 828—839. 24. A meta-analysis of cytokines in major depression / Y. Dowlati, N. Herrmann, W. Swardfager [et al.] // Biol Psychiatry. 2010. № 67 (5). Р. 446—457. 25. Liu Y., Ho RC-M., Mak A. (IL)-6, tumour necrosis factor alpha (TNF-α) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression // J. Affect Disord. 2012. № 139 (3). Р. 230—239. 26. Villanueva R. Neurobiology of Major Depressive Disorder // Neural. Plast. 2013. doi: 10.1155/2013/873278. 27. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with selective serotonin reuptake inhibitor efficacy in depressed patients / Serretti A., Kato M., De Ronchi D., Kinoshita T. // Mol. Psychiatry. 2007. № 12. Р. 247—257. 28. Polymorphisms in the SLC6A4 and HTR2A genes influence treatment outcome following antidepressant therapy / Wilkie M. J., Smith G., Day R. K. [et al.] // Pharmacogenomics J. 2009. № 9. Р. 61—70. 29. Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment / F. J. McMahon, S. Buervenich, D. Charney [et al.] // Am. J. Hum. Genet. 2006. № 78. Р. 804—814. 30. Licinio J., Dong C., Wong M. L. Novel sequence variations in the brain-derived neurotrophic factor gene and association with major depression and antidepressant treatment response // Arch Gen Psychiatry. 2009. № 66. Р. 488—497. 31. Kato M., Serretti A. Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder // Mol. Psychiatry. 2010. № 15. Р. 473—500. 32. Lack of ventral striatal response to positive stimuli in depressed versus normal subjects / J. Epstein, H. Pan, J. H. Kocsis [et al.] // Am. J. Psychiatry. 2006. № 163. Р. 1784—1790. 33. Visscher P. M., Brown M. A., McCarthy M. I., Yang J. Five years of GWAS discovery // Am J Hum Genet. 2012; 90: 7—24. 34. GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium // Mol Psychiatry. 2017 Mar; 22(3): 336—345. doi: 10.1038/ mp.2016.244.